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The Idea
Suppose that we want to prove the existence of a combinatorial
object that has certain properties.

In the probabilistic method, we approach this problem by defining
a sample space of combinatorial objects and showing that a
randomly chosen element of this space has the desired properties
with positive probability.
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Ramsey Numbers
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Ramsey Numbers

The Problem n “ Rpa, bq

What is the smallest number n “ Rpa, bq such that in any set of
n people there must be

1 a mutually aquainted people or

2 b mutual strangers.

The numbers Rpa, bq are called Ramsey numbers.
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Ramsey Numbers

We can model a set of n people with a complete graph. We color
an edge pi , jq red if i and j are acquainted and blue otherwise.

Reformulated Problem

Let Rpa, bq be the smallest integer n such that in any edge-coloring
of Kn with the two colors red and blue, there exists

1 an induced red Ka subgraph or

2 an induced blue Kb subgraph.
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Example
Proposition

Rp2, nq “ n

Proof.

This one is easy. Any coloring of Kn has either has (a) one or more red edges, so
it contains a red K2, or (b) it does not contain any red edges, but then it
contains a blue Kn.

A

B
C

D
E

A

B
C

D
E

We can also formulate it as follows. At a party with n people, there are either
two people knowing each other or they are all mutual strangers.
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Example

Proposition

Rp3, 3q ą 5

A

B
C

D
E

In a party of 5 people, it can happen that there are no 3 people that
are mutually aquainted and no 3 people that are mutually strangers.
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Example
Proposition

R(3, 3) = 6.

Proof.

It suffices to show that Rp3, 3q ď 6. Let G “ pV ,E q be the red induced
subgraph of K6. Let u P V be an arbitrary vertex. Then there are two cases:

1 Suppose that the set Npuq “ tv P V |pu, vu P Eu has at least 3 elements.
Then either Npuq is an independent set of strangers and the proposition
holds, or we have two adjacent vertices v1, v2 P Npuq, in which case
tu, v1, v2u is a clique of friends and the proposition also holds.

2 Suppose that the set Npuq “ tv P V |pu, vq P Eu has at most 2
elements. Then by case (1), there is a clique or a independent set of size
3 in the complement graph of G and thus also in G .

In any case, we have that Rp3, 3q ď 6, as claimed.
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Ramsey Theory

Finding the precise value of the Ramsey numbers Rpa, bq is at the
heart of Ramsey theory in combinatorics.

It is known that Kn contains a red Ka or a blue Kb induced subgraph
for all large n, but finding the precise value of Rpa, bq is difficult.

Rp3, 3q “ 6, Rp4, 4q “ 18, Rp5, 5q “?
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Lower Bound on Ramsey Numbers

Proposition (Erdős)

If
`

n
k

˘

21´pk2q ă 1, then Rpk , kq ą n.
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Proof.
Consider Kn and a random 2-coloring on its edges, namely we color
an edge red with probability 1/2, and blue with probability 1/2.
For any k-subset S of vertices, let MS be the event that the
induced subgraph on S is monochromatic. Then,

PrrMSs “ PrrS reds ` PrrS blues “
1

2p
k
2q
`

1

2p
k
2q
“ 21´pk2q.

Thus, the probability that some k-subset forms a monochromatic

subgraph is at most
`

n
k

˘

21´pk2q. Since
`

n
k

˘

21´pk2q ă 1, there exists
some 2-coloring for which there is no monochromatic Kk . In other
words, Rpk , kq ą n.
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Hamiltonian Paths in Tournaments
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Tournaments

Definition
A tournament Tn is a directed graph that is obtained from
undirected complete graph Kn by orienting each edge.

The directed graph Tn represents a round robin tournament with n players. An
edge pu, vq in the graph Tn means that player u has beaten player v .
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Hamiltonian Paths
Definition
A Hamiltonian path is a path of n ´ 1 edges that visits each
vertex of Tn precisely once, v1 Ñ v2 Ñ v3 Ñ ¨ ¨ ¨ Ñ vn.

A

BC

D

E F AÑ B Ñ C Ñ D Ñ E Ñ F
B Ñ AÑ C Ñ D Ñ E Ñ F
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Abundance of Hamiltonian Paths

Our goal is to show that there exists a tournament that has an
abundance of Hamiltonian paths.

Proposition

Consider the complete graph Kn on n vertices. There exists a
tournament on Kn that has at least n!{2n´1 Hamiltonian paths.
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Pigeonhole Principle of Expectation

Proposition

A random variable cannot always be less than its expected value.

Proof.
Seeking a contradiction, suppose that X is a discrete random
variable that has values always less than µ “ ErX s. Then

ErX s “
ÿ

αPX pΩq

αPrrX “ αs ă
ÿ

αPX pΩq

µPrrX “ αs “ ErX s,

contradiction.

Similarly, a random variable cannot always be larger than its expected value.
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Proof.

Construct a tournament on Kn by randomly orienting each edge in Kn with
probability 1{2. Consider a random permutation π on n points. The vertices
pvπ1, vπ2, . . . , vπnq form a Hamiltonian path if and only if vπk beats vπpk`1q for all
k in the range 1 ď k ď n ´ 1. Let Xπ denote the indicator random variable for
the event that π yields a Hamiltonian path. Then

ErXπs “ PrrXπ “ 1s “ 1{2n´1.

Let X “
ř

Xπ be the random variable counting Hamiltonian paths. Since there
are n! permutations, the expected number of Hamiltonian paths is

ErX s “
ÿ

πPSn

ErXπs “ n!{2n´1.

By the pigeonhole principle of expectation, it follows that some tournament must
have at least n!{2n´1 Hamiltonian paths.
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Large Cuts
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Large Cuts

Problem
Given an undirected graph G . Find a maximum cut in G .

The problem is NP-hard, so there is little hope to find an efficient
randomized algorithm to solve it. We can consider a weaker version.

Problem
Given an undirected graph G with m edges. Find a large cut that
has at least m{2 edges.
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Large Cuts

Proposition

Given an undirected graph G “ pV ,E q with m edges, there exists a
partition of V into two disjoint sets A and B such that at least m{2
edges cross the cut pA,Bq.
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Proof.
For each vertex, flip a fair coin and put the vertex in A if the coin
shows heads, and put the vertex in B if the coin shows tails. Let
e1, e2, . . . , em be an enumeration of the edges in E . Define the
indicator random variable Xk

Xk “

#

1 if edge k crosses the cut pA,Bq,

0 otherwise
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Proof. (Continued)

The probability that the edge crosses the cut pA,Bq is 1/2; hence,

ErXks “
1

2
.

Let SpA,Bq denote the size of the cut pA,Bq. Then

ErSpA,Bqs “ E

«

m
ÿ

k“1

Xk

ff

“

m
ÿ

k“1

ErXks “
m

2
.

Thus, there exists a cut pA,Bq of size m{2. 2
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Probabilistic Circuits
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Probabilistic Circuits

Definition
A probabilistic circuit has n standard input variables x1, . . . , xn
and m random inputs. The random inputs are chosen uniformly at
random from t0, 1u.

We say that C pxq computes are boolean function
f : t0, 1un Ñ t0, 1u if and only if

PrrC pxq “ f pxqs ě 3{4

holds for all inputs x P t0, 1un.

In other words, C pxq is a boolean circuit that has access to m coin flips.
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Question

Can probabilistic circuits for computing a boolean function f pxq
have a much smaller circuit size than deterministic circuits?
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Majority

Definition
The majority function Majn on n boolean variables is defined as

Majnpx1, x2, . . . , xnq “

#

1 if x1 ` x2 ` ¨ ¨ ¨ ` xn ě rn{2s,

0 otherwise.
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Probability Amplification

Proposition

Let X1,X2, . . . ,Xm be independent Bernoulli random variables with

PrrXk “ 1s “ 1{2` ε

for all k in the range 1 ď k ď m. Then

PrrMajpX1,X2, . . . ,Xmq “ 0s ď e´2ε2m.

27 / 41



Proof.

Let F be the family of all subsets of t1, 2, . . . ,mu of size ě rm{2s.
Let us denote the probability

PrrMajpX1,X2, . . . ,Xmq “ 0s

that most random variables have the value 0 shortly by q.
We can express q explicitly as follows:

q “
ÿ

SPF
PrrXk “ 0 for all k P SsPrrXk “ 1 for all k R Ss

“
ÿ

SPF
p1{2´ εq|S |p1{2` εqm´|S |
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Proof. (Continued)

If we multiply each term of the latter sum by the factor

ˆ

1{2` ε

1{2´ ε

˙|S |´m{2

ě 1,

then we get the bound

q “
ÿ

SPF
p1{2´ εq|S |p1{2` εqm´|S |

ď
ÿ

SPF
p1{2´ εqm{2p1{2` εqm{2.
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Proof. (Continued)

Since F contains at most 2m sets, we can rewrite the sum as

q ď
ÿ

SPF
p1{2´ εqm{2p1{2` εqm{2

ď 2mp1{2´ εqm{2p1{2` εqm{2

“ p1´ 2εqm{2p1` 2εqm{2

“ p1´ 4ε2
q
m{2
ď e´4ε2m{2

“ e´2ε2m,

which proves the claim.
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Proposition (Adelman)

If a boolean function f of n variables can be computed by a
probabilistic circuit of size M , then f can be computed by a
deterministic circuit of size at most 8nM .
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Proof
Let C be a probabilistic circuit that computes f .

Take m independent copies of C1,C2, . . . ,Cm of C with their own
independent random inputs.

Let C 1 denote the probabilistic that computes the majority of the
results of the m copies,

C 1pxq “ MajpC1pxq,C2pxq, . . . ,Cmpxqq.
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Proof. (Continued)

Fix an input v P Fn
2. Let Xk denote the indicator random variable

for the event
Ckpvq “ f pvq.

Then PrrXk “ 1s “ 1{2` ε with ε “ 1{4.

Since C 1 uses majority logic, it will err with probability

PrrC 1pvq ‰ f pvqs ď e´2ε2m
“ e´m{8.

By the union bound, C 1 will err for some input with probability

PrrDv P Fn
2 : C 1pvq ‰ f pvqs ď 2ne´m{8.
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Proof. (Continued)

If we choose m “ 8n, then

PrrDv P Fn
2 : C 1pvq ‰ f pvqs ď 2ne´n ă 1.

We can conclude that there must exist some assignment ν of
random inputs such that

C 1pvq “ f pvq

for all v P Fn
2. If we fix the random inputs in C 1 to the values given

in ν, then this is a deterministic circuit of size 8nM , as claimed.a

aIf we want to be picky, then we should add Oplogp8nqq gates to implement the majority logic.
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Alterations
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Alterations

The Idea
Our goal is to prove the existence of a combinatorial object that
has certain properties.

Sometimes we will struggle to show that a randomly chosen
element has all the desired properties with positive probability.
Maybe we will be able to construct a combinatorial object that has
some of the properties. This is also ok, as long as we can alter the
combinatorial object into some object that has all the desired
properties.
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Ramsey Numbers

Proposition

For any positive integer n,

Rpk , kq ą n ´

ˆ

n

k

˙

21´pk2q.
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Proof.
Consider a random coloring of the edges of Kn with two colors. We
color each edge e independently such that

Prre reds “
1

2
“ Prre blues.

For any subset R of the set of vertices with k elements, let XR

denote the indicator random variable for the event that the induced
subgraph on R is monochromatic.
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Proof. (Continued)

Let
X “

ÿ

XR ,

where the sum extends over all k-subsets of the vertex set of Kn.
Then

ErX s “
ÿ

ErXRs “

ˆ

n

k

˙

21´pk2q.

It follows that there exists a 2-coloring that has at most

X ď
`

n
k

˘

21´pk2q monochromatic Kk subgraphs.
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Proof. (Continued)

If we delete one vertex from each monochromatic subgraph, we
obtain a coloring of a complete graph with

n ´

ˆ

n

k

˙

21´pk2q

vertices that does not have any monochromatic Kk subgraphs.

It follows that Rpk , kq ą n ´
`

n
k

˘

21´pk2q, as claimed.
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