Primality Tests

Andreas Klappenecker

Texas A&M University

© 2018-2019 by Andreas Klappenecker. All rights reserved.

Question

Suppose that Bob chooses the large number such as

 $n = 456\,989\,977\,669$

How can Bob check whether n is prime?

Actually, this is a "small number". We are usually interested in testing primality of numbers with hundreds of digits, but those do not look too nice on a slide.

AKS Primality Test

- Use the Agrawal-Kayal-Saxena primality test.
- It is a deterministic $\widetilde{O}(\log(n)^{12})$ time algorithm.
- ullet Space requirements make the test impractical for large n.

Unlike integer factorization into primes, we know a poly-time algorithm for primality testing, but it is not too useful in practice.

Goal

Goal

We will now develop some randomized algorithms for primality testing.

Notation: Congruence Relations

Congruence Relation

Congruence Relation

Let a, b, and n be integers. We write

$$a \equiv b \pmod{n}$$

if and only if the integer a - b is divisible by n.

Example

- $\bullet 39 \equiv 9 \pmod{15}$
- $\bullet \ 1001 \equiv 1 \ (\mathsf{mod} \ 10)$
- $a \equiv b \pmod{n}$ means that a and b have the same remainder when divided by n.

Important Properties

Congruence Properties

If $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$, then

- $a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$,
- $a_1 b_1 \equiv a_2 b_2 \pmod{n}$,
- $\bullet \ a_1 \cdot b_1 \equiv a_2 \cdot b_2 \ (\mathsf{mod} \ n).$

These properties follow easily from the definition.

What about division?

Bezout's Theorem

If a and b are integers, and $g = \gcd(a, b)$, then there exist integers a' and b' such that

$$\gcd(a,b)=aa'+bb'.$$

This follows from the Euclidean algorithm. Recall that this algorithm performs successive quotient/remainder calculations, $a = bq_1 + r_1$, replaces a and b by b and r_1 , and repeats until the remainder is 0. In matrix notation,

$$\underbrace{\begin{pmatrix} 0 & 1 \\ 1 & -q_k \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -q_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix}}_{=\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \gcd(a, b) \\ 0 \end{pmatrix}$$

Important Properties

If gcd(a, n) = 1, then there exists an integer a' such that

$$aa' \equiv 1 \pmod{n}$$
.

In other words, a has then a multiplicative inverse.

Indeed, by Bezout's theorem,

$$\gcd(a,n)=1=aa'+nn'$$

for some integers a' and n'. Reducing this equation modulo n, we get

$$1 \equiv aa' \pmod{n}$$
.

We usually denote the multiplicative inverse of a by a^{-1} , so a^{-1} is the integer a'.

Fermat

Fermat's Little Theorem

We need the following simple result from number theory.

Fermat's Little Theorem

Let p be a prime. Then

$$a^p \equiv a \pmod{p}$$

for all integers a.

Proof of Fermat's Little Theorem (1/2)

Case 1. Suppose that *p* divides *a*. Then $a \equiv 0 \equiv a^p \pmod{p}$.

Case 2. Suppose that *p* does not divide *a*.

Then $a^p \equiv a \pmod{p}$ is equivalent to $a^{p-1} \equiv 1 \pmod{p}$.

Consider the p-1 numbers

$$a, 2a, 3a, \ldots, (p-1)a.$$

We claim that they are all **different** mod p. Indeed, if we would have $ja \equiv ka \pmod{p}$, then $(j-k)a \equiv 0 \pmod{p}$. Since $a \not\equiv 0 \pmod{p}$, we must have $(j-k) \equiv 0 \pmod{p}$. So $j \equiv k \pmod{p}$. However, this implies j=k, since $1 \leqslant j, k < p$.

Proof of Fermat's Little Theorem (2/2)

Since $a, 2a, 3a, \dots (p-1)a$ are p-1 different nonzero numbers mod p, we have

$${a, 2a, 3a, \dots, (p-1)a} = {1, 2, 3, \dots, p-1} \pmod{p}$$

Multiplying these numbers together, we can conclude that

$$a^{p-1}(p-1)! = a \cdot 2a \cdot 3a \cdot \cdots \cdot (p-1)a \equiv (p-1)! \pmod{p}.$$

Since $(p-1)! \not\equiv 0 \pmod{p}$, we can divide both sides by it and get:

$$a^{p-1} \equiv 1 \pmod{p}$$
.

We can conclude that $a^p \equiv a \pmod{p}$ holds \square .

Witnesses

Witness

Fix an integer n. We say that an integer a is a **Fermat witness** for the compositeness of n if and only if

$$a^n \not\equiv a \pmod{n}$$

holds.

Example

Bob wants to know whether

$$n = 456\,989\,977\,669$$

is a prime number.

The answer is a resounding **no**, since

$$2^n \equiv 1493546 \not\equiv 2 \pmod{n},$$

so 2 is a Fermat witness for the compositeness of n.

Example

Note that we did not need to find the factorization of n to establish the compositeness. We have

$$n = 456\,989\,977\,669 = p_{50\,000}p_{60\,000}$$

SO

$$456\,989\,977\,669 = 611\,953 \times 746\,773.$$

Often trying a small number of potential witnesses will reveal much quicker that n is composite than factorization.

Plenty of Witnesses

Lemma

Let n be odd. If n has a Fermat witness b for compositeness, then at least half of the elements in

$$\mathbf{Z}_n^* = \{ a \in \mathbf{Z}_n \mid \gcd(a, n) = 1 \}$$

are Fermat witnesses for compositeness.

Let $S = \{a \in \mathbf{Z}_n^* \mid a^{n-1} \equiv 1 \pmod{n}\}$ be the set of non-witnesses. Then $\{ab \mid a \in S\}$ is a set of |S| distinct witnesses, since $(ab)^{n-1} \not\equiv 1 \pmod{n}$.

Fermat Test Algorithm

```
Input: a positive integer n \ge 2.
for i = 1 to t do
        Choose an integer a in the range 2 \le a < n uniformly
       at random
       return 'composite' if a^n \not\equiv a \pmod{n}.
od:
return 'potentially prime'
```

Snag

Consider n = 561.

Then

$$a^{561} \equiv a \pmod{561}$$

for all a in the range $1 \le a \le 560$. But

$$561 = 3 \times 11 \times 17$$
.

Nasty numbers such as 561 that have no Fermat witnesses of compositeness are called Carmichael numbers.

[In other words, a **Charmichael number** is a composite number n such that $b^n \equiv b \pmod{n}$ holds for all integers b.]

Conclusion

Fermat Test

The Fermat test **cannot prove primality** with certainty.

However, it can prove compositeness.

Flaw

The Fermat test systematically fails to detect that Carmichael numbers are composite.

There exist an infinite number of Carmichael numbers.

Conclusion

We need a better concept for the witnesses.

Miller-Rabin

Quadratic Residues

Let p be a prime and x an integer such that

$$x^2 \equiv 1 \pmod{p}$$
.

Then $x^2 - 1$ is a difference of squares, and we get

$$(x-1)(x+1) \equiv 0 \pmod{p}.$$

Therefore, we can conclude that either

$$x \equiv 1 \pmod{p}$$
 or $x \equiv -1 \pmod{p}$.

Observation

If p is an odd prime and a is an integer not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

by Fermat's little theorem. Since p-1 is even and $a^{p-1}\equiv 1\pmod p$, we have

$$a^{(p-1)/2} \equiv \pm 1 \pmod{p}.$$

This is another condition that we can check.

If (p-1)/2 is even and $a^{(p-1)/2} \equiv 1 \pmod{p}$, then

$$a^{(p-1)/4} \equiv \pm 1 \pmod{p}.$$

We can continue in this fashion.

A New Beginning

Proposition

Let p be an odd prime and write

$$p-1=2^kq$$
 with integers $k\geqslant 0$ and q odd.

Let a be any positive integer not divisible by p. Then one of the following conditions is true:

- (a) $a^q \equiv 1 \pmod{p}$.
- (b) One of $a^q, a^{2q}, a^{4q}, \dots, a^{2^{k-2}q}, a^{2^{k-1}q}$ is $\equiv -1 \pmod{p}$.

Proof of the Proposition

By Fermat's Little Theorem, we have $a^{p-1} \equiv a^{2^k q} \equiv 1 \pmod{p}$. Thus, in the list

$$a^{q}, a^{2q}, a^{4q}, \ldots, a^{2^{k-1}q}, a^{2^{k}q}$$

the last one is congruent to 1 and each number is the square of the previous number. Then we either have

- the first number satisfies $a^q \equiv 1 \pmod{p}$,
- there must be some number b in the list such that $b \not\equiv 1 \pmod{p}$ and $b^2 \equiv 1 \pmod{n}$. A integer b satisfying

$$b\not\equiv 1\pmod p$$
 and $b^2\equiv 1\pmod p,$ must satisfy $b\equiv -1\pmod p.$

Let us reiterate

If p be an odd prime,

$$p-1=2^kq$$
 with integers $k\geqslant 0$ and q odd,

and a is a positive integer not divisible by p, then one of the following conditions is true:

- (a) $a^q \equiv 1 \pmod{p}$.
- (b) One of $a^q, a^{2q}, a^{4q}, \dots, a^{2^{k-2}q}, a^{2^{k-1}q}$ is $\equiv -1 \pmod{p}$.

What is the negation of this statement?

Miller-Rabin Witnesses

Miller-Rabin Witness

Let n be an odd positive integer and write $n-1=2^kq$ with q odd. An integer a satisfying gcd(a,n)=1 is called a Miller-Rabin witness for n if and only if the following two conditions are satisfied:

- $\bullet \ a^q \not\equiv 1 \pmod{n},$
- $a^{2^{j}q} \not\equiv -1 \pmod{n}$ for all $j = 0, 1, 2, \dots, k 1$.

Example

Consider the Carmichael number n = 561.

Then
$$n-1 = 560 = 2^4 \cdot 35$$
.

For a = 2 and q = 35, we get

$$2^{35} \equiv 263 \not\equiv 1 \pmod{561}$$

and

$$2^{35} \equiv 263 \not\equiv -1 \pmod{561}$$
 $2^{70} \equiv 166 \not\equiv -1 \pmod{561}$
 $2^{140} \equiv 67 \not\equiv -1 \pmod{561}$
 $2^{280} \equiv 1 \not\equiv -1 \pmod{561}$

Thus, 2 is a Miller-Rabin witness for compositeness of n = 561.

Abundance of Miller-Rabin Witnesses

Proposition

Let n be an odd composite number. Then at least 75% of the numbers a between 1 and n-1 are Miller-Rabin witnesses for n.

Miller-Rabin Primality Test

```
Input: a positive integer n \ge 2.
for i = 1 to t do
       Choose an integer a in the range 2 \le a < n uniformly
       at random.
       return 'composite' if a is MR-Witness (mod n).
od:
return 'prime' // potentially incorrect
```

Probabilities

We want to know

$$Pr[n \text{ prime } | \text{ 'prime'}] = ?$$

We do know

$$Pr[\text{'composite'} \mid n \text{ prime}] = 0$$

$$Pr['prime' \mid n \text{ prime}] = 1$$

$$Pr[n \text{ composite} | 'composite'] = 1$$

$$Pr['prime' \mid n \text{ composite}] = \left(\frac{1}{4}\right)^t$$

Primality Theorem

$$\frac{\pi(n)}{n} \sim \frac{1}{\ln n}$$

Thus, for large n, we have

$$Pr[n \text{ is prime}] \approx \frac{1}{\ln n}$$
 and $Pr[n \text{ is composite}] \approx \frac{\ln n - 1}{\ln n}$

Bayes Formula

$$\Pr[A|B] = \frac{\Pr[B|A]\Pr[A]}{\Pr[B|A]\Pr[A] + \Pr[B|\overline{A}]\Pr[\overline{A}]}.$$

Probability that Miller Rabin Correctly Identifies a Prime (1/3)

$$\Pr[A|B] = \frac{\Pr[B|A]\Pr[A]}{\Pr[B|A]\Pr[A] + \Pr[B|\overline{A}]\Pr[\overline{A}]}.$$

Let A = n prime, and B = 'PRIME'.

Pr[n prime]'PRIME'] =

Pr['PRIME'|n prime] Pr[n prime]

 $\overline{\Pr['\mathsf{PRIME'}|n|\mathsf{prime}]}$ $\overline{\Pr[n|\mathsf{prime}]}$ + $\overline{\Pr['\mathsf{PRIME'}|n|\mathsf{composite}]}$ $\overline{\Pr[n|\mathsf{composite}]}$

Probability that Miller Rabin Correctly Identifies a Prime (2/3)

$$\frac{\Pr[n \text{ prime}|' \text{PRIME'}] = }{\Pr[' \text{PRIME'}|n \text{ prime}] \Pr[n \text{ prime}]} \frac{\Pr[' \text{PRIME'}|n \text{ prime}] \Pr[n \text{ prime}]}{\Pr[' \text{PRIME'}|n \text{ prime}] + \Pr[' \text{PRIME'}|n \text{ composite}] \Pr[n \text{ composite}]}.$$

$$\Pr[n \text{ prime}|'\mathsf{PRIME'}] = \frac{1 \cdot (1/\ln n)}{1 \cdot (1/\ln n) + \frac{1}{4^t}(\ln n - 1)/\ln n}$$

Probability that Miller Rabin Correctly Identifies a Prime (3/3)

$$Pr[n \text{ prime}|'PRIME'] = \frac{1}{1 + \frac{1}{4^t}(\ln n - 1)}$$

Thus, if $t \ge \log_4(\ln n - 1)$, then $\Pr[n \text{ prime} | PRIME'] \ge 1/2$.

If t = 5, then you can determine with probability 1/2 or greater whether a 1024 bit number is prime.

Conclusions

Primality tests were among the first randomized algorithms.

The Miller-Rabin primality test is an example of a Monte-Carlo randomized algorithm with one-sided error (it never errs when declaring 'composite', but it might err when declaring 'prime').

With a few repetitions, we can keep the probability of error very low. If you choose $t \ge 30$ repetitions, then the chance that your computer hardware will make a mistake in the calulations is more likely than that the probability test fails.

We will need a few facts from probability theory, but not too many! We will review everything that we will need.