Problem Set 4

CSCE 658 Randomized Algorithms

Due dates: Electronic submission of the .pdf file of this homework is due on 2/21/2019 before 2:00pm on e-campus (as a turnitin assignment), a signed paper copy of the pdf file is due on 2/21/2019 at the beginning of class.

Name: (put your name here)

Resources. (All people, books, articles, web pages, etc. that have been consulted when producing your answers to this homework)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature: _____

Read Chapter 4 in our textbook. If time permits, skim the first few chapters in a graduate textbook on probability theory.

Problem 1. A fixed point of a permutation $\pi: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ is a value x such that $\pi(x) = x$. Find (a) the expected number of fixed points and (b) the variance in the number of fixed points when the permutation is chosen uniformly at random from all permutations on n points.

Solution.

Problem 2. Show that one can efficiently simulate choosing a random number from 1 to N using coin tosses. Specifically, show that for every integer $N \ge 2$ and $\delta > 0$ there is a randomized algorithm A running in poly $(\log N \log(1/\delta))$ -time with output in

$$\{1, 2, \ldots, N, ?\}$$

such that

- (a) conditioned on not outputting ?, the output of A is uniformly distributed in $\{1, 2, ..., N\}$.
- (b) the probability that A outputs ? is at most δ .

Solution.

Problem 3. Gain mastery (better reach 98 or more) in the probability theory topics on alcumus.

Checklist:

- \Box Did you add your name?
- □ Did you disclose all resources that you have used? (This includes all people, books, websites, etc. that you have consulted)
- $\hfill\square$ Did you sign that you followed the Aggie honor code?
- \Box Did you solve all problems?
- □ Did you submit the pdf file (resulting from your latex file) of your homework?
- \Box Did you submit a hardcopy of the pdf file in class?