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Conditional Expectation

We are going to define the conditional expectation of a random
variable given

@ an event,
@ another random variable,

@ a o-algebra.

Conditional expectations can be convenient in some computations.
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Conditional Expectation given an Event

Definition
The conditional expectation of a discrete random variable X
given an event A is denoted as E[X | A] and is defined by

E[X | A] = ZxPr — x| Al.

It follows that

Pr[X = x and A]
> x

E[X | A] = szr = x| Al = =
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Example

Problem
Suppose that X and Y are discrete random variables with values in {1,2} s.t.

Calculate E[X | Y =1].
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Example

Problem

Suppose that X and Y are discrete random variables with values in {1,2} s.t.

Calculate E[X | Y =1].

By definition

L PIX=2Y =1]
PrlY = 1] PrlY = 1]
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Example

Problem

Suppose that X and Y are discrete random variables with values in {1,2} s.t.
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Example

Problem

Suppose that X and Y are discrete random variables with values in {1,2} s.t.
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Example

Problem
Suppose that X and Y are discrete random variables with values in {1,2} s.t.

PX=1Y=1] PlX=2Y=1]
PrlY =1] PrlY =1]
12 ,1/10 5 1

7
_ 1= _ 2402 _ 1L
35 °35 6 6 6

EX|Y=1=1
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Conditional Expectation
Interpretation

Let F = 2% with Q finite. For a random variable X and an event A,

we can interpret E[X | A] as the average of X(w) over all w € A.

Indeed, we have

ZXPr[X = x and A]

E[X|A] = ZxPr = x| Al = =

rlw]
_ZX A

weA
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Conditional Expectation
Interpretation

Let F = 2% with Q finite. For a random variable X and an event A,
we can interpret E[X | A] as the average of X(w) over all w € A.

Indeed, we have

E[X|A] = ZxPr = x| Al =

w
_Zx AT

weA

Pr[X = x and A]
2 Pr{A]

Caveat

This interpretation does not work for all random variables, but it gives a better understanding
of the meaning of E[X | A].
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Conditional Expectation

Proposition
We have E[X 1]
X|A A
b 41 Pr[A]
Proof.
As we have seen,
Pr|X = Al
E[XIA] = Y x rl PrE;\]a”d ZxPr — x and A].

We can rewrite the latter expression in the form

E[X 4]

E[XIA] = S

]
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Definition for General Random Variables

Definition
The conditional expectation E[X | A] of an arbitrary random
variable X given an event A is defined by

E[X /4]

E[X|A] = Pr[A]
0 otherwise.

if Pr[A] > 0,
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Linearity
Proposition
If a and b are real numbers and X and Y are random variables, then

E[aX + bY | A = aE[X | A] + bE[Y | A].

Proof.

E[(aX + bY) Ia]
Pr[A]
E[XIa]  , E[Y /4]
PA] O PHA
— ZE[X | A] + bE[Y | A]. =

E[aX + bY | A] =
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Independence

Proposition
If X and Y are independent discrete random variables, then

E[Y | X = x] = E[Y].

Proof.
By definition,
E[Y | X =x] =) yPr[Y =y | X =x]
y
= > yPr[Y = y] = E[Y]. O

y
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Computing Expectations

We can compute the expected value of X as a sum of conditional
expectations. This is similar to the law of total probability.

Proposition
If X and Y are discrete random variables, then

E[X] = ) E[X | Y = y]Pr[Y = y].

y
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Proposition
If X and Y are discrete random variables, then

E[X] = Y E[X| Y = y]Pr[Y = y].

ZZZxPr[X = x|Y = y]|PrY = y]
:ZZxPr[X =x,Y =y]
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Why We Need More than One Type of
Conditional Expectation




Conditional Expectation

We can also define conditional expectations for continuous random
variables.
Definition
The conditional expectation of a discrete random variable Y given that X = x is

defined as
E[Y [ X =x] =) yPr[Y =y | X =x].
y

The conditional expectation of a continuous random variable Y given that X = x
is defined as

o0
E[Y | X =x] = J ¥ fyix=x(y) dy,

We assume absolute convergence in each case.
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Motivating Example

Problem

A stick of length one is broken at a random point, uniformly
distributed over the stick. The remaining piece is broken once
more.

Find the expected value of the piece that now remains.
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Motivating Example

Let X denote the random variable giving the length of the first
remaining piece. Then X is uniformly distributed over the unit
interval (0,1).

Let Y denote the random variable giving the length of the second
remaining piece. Then Y is uniformly distributed over the shorter
interval (0, X).
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Motivating Example: Interpretation

Given that X = x, the random variable Y is uniformly distributed
over the interval (0, x). In other words,

Y| X=x
has the density function
1
fy|x— = —
Y|x_x()/) X

for all y in (0, x).
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Motivating Example: Expectation

For a random variable Z that is uniformly distributed on the interval (a, b), we

have

E[Z]

Il

%
S

X

—
&

Il
=
N~

N
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Motivating Example: Expectation

For a random variable Z that is uniformly distributed on the interval (a, b), we
have

b1 1 1,
E[Z]—be_adX—b_aE )
_b*—2a> b+a
S 2(b—a) 2

Example

Since the random variable X is uniformly distributed over the interval (0, 1), we

have 1+0 1
E[X] =~ — =
[X] > >
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Motivating Example

Example
Since Y|X = x is uniformly distributed over (0, x), we get

X1 x+0 x
E[lY | X =x]| = —dy = = —.
¥ IX=n = | yrdy == =3
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Motivating Example

Example
Since Y|X = x is uniformly distributed over (0, x), we get

X1 x+0 x
E[lY | X =x]| = —dy = = —.
¥ IX=n = | yrdy == =3

Does this solve the problem?
Now we know the expected length of the second remaining piece,

given that we know the length x of the first remaining piece of the
stick.
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Motivating Example

We can also define a random variable E[Y | X] that satisfies
E[Y | X](w) = E[Y | X = X(w)].

We expect that

1
E[E[Y | X]] = E[X/2] = .
Now this solves the problem. The expected length of the remaining

piece is 1/4 of the length of the stick.



Conditional Expectation given a Random
Variable



Motivation

Question
How should we think about E[X | Y]?

Answer

Suppose that Y is a discrete random variable. If we observe one of the values y
of Y, then the conditional expectation should be given by

E[X|Y =yl

If we do not know the value y of Y, then we need to contend ourselves with
the possible expectations

EIX|Y=w], EX|Y=ywm] EX|Y=w...

So E[X | Y] should be a o(Y)-measurable random variable itself.
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Definition
Definition
Let X and Y be two discrete random variables.

The conditional expectation E[X | Y] of X given Y is the
random variable defined by

E[X | Y](w) =E[X]|Y = Y(w)].
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Definition
Definition
Let X and Y be two discrete random variables.

The conditional expectation E[X | Y] of X given Y is the
random variable defined by

E[X | Y](w) =E[X]|Y = Y(w)].

Caveat

Sometimes E[X | Y] is defined differently as a B(R)-measurable function
y — E[X | Y = y]. We prefer to think about E[X | Y] as a function 2 — R.
The two definitions are obviously not equivalent. Our choice generalizes nicely.
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A Pair of Fair Coin Flips

Example

Suppose that X and Y are random variables describing independent
fair coin flips with values 0 and 1. Then the sample space of
(X,Y) is given by

Q ={(0,0),(0,1),(1,0),(1,1)}.
Let Z denote the random variable Z = X + Y. Then we have

7(0,0)=0, Z(0,1)=1, Z(1,00=1, Z(1,1)=2.
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A Pair of Fair Coin Flips

Example (Continued.)

Suppose that we want to know E[Z | X]. We calculate
1

E[Z| X =0]=0-5+
1
E[Z| X=1]=1- R

Then
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A Pair of Fair Coin Flips

Example (Continued.)

Suppose that we now want to know E[Z | Y]. We calculate
1 1 1
ElIZ|Y=0=0-=+4+1.-—=—
[Z]Y=0]=0+1;=7
1 1 3
ElZ|Y=1]]=1-=+4+2.=-=—.
[Z]Y=1=1-5+25=7

Then
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A Pair of Fair Coin Flips
Example (Continued.)
Suppose that we now want to know E[X | Z]. We calculate

E[X|Z=0]=0
E[X[Z—1]-0-241.2_

1
TR R,
EX|[Z=2]-1

Then

m
el
<
N
| S—)
=
(@)
~—
I
N = \.O
m
—
>
N
/~
=
| —
SN—
I
N[ =
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Properties of the Conditional Expectation
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Functions

Proposition
If X is a function of Y, then E[X | Y] = X.

Proof.
Suppose that X = f(Y). Then

E[X | Y](w) =E[X]|Y = Y(w)]
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Independence

Proposition
If X and Y are independent, then E[X | Y] = E[X].

Proof.
For all w in €2, we have

E[X | Y](w) =E[X|Y = Y(w)] = E[X]. O
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Linearity

Proposition
If a and b are real numbers and X, Y, and Z discrete random
variables, then

E[aX + bY | Z] = aE[X | Z] + bE[Y | Z].
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A Pair of Fair Coin Flips

Example

Suppose that X and Y are independent random variables describing
fair coin flips with values 0 and 1. Let Z = X + Y. We determined
E[Z]|X], but it was a bit cumbersome. Here is an easier way:

E[Z | X] = E[X + Y | X] by definition
— E[X | X] + E[Y | X] by linearity
= X + E[Y] by function and by independence
1

— X + =
i
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Law of the Iterated Expectation
Proposition

E[E[X | Y]] = E[X].

Proof.

E[E[X | Y]] = Y JE[E[X | Y]|Y = y]Pr[Y = y]
= Y E[X|Y =y]Pr[Y = y]
~EX]
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Wald's Theorem

Theorem
Suppose that Xy, X5, ... are independent random variables, all with
the same mean. Suppose that N is a nonnegative, integer-valued
random variable that is independent of the X;'s. If E[Xi] < o0 and
E[N] < oo, then

N

> x

k=1

E — E[N]E[X4].
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Proof.
By double expectation, we have

N

E Xi

[N
'\N =n
'\N =n
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Proof. (Continued)




Dice

Example

Suppose that we roll a navy die. The face value N of the die ranges
from 1 to 6. Depending on the face value of the navy die, we roll N
ivory dice and sum their values.

On average, what is the resulting value of the sum face values of
the N ivory dice?
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Dice: Solution

Solution
Let Xi,...,Xe denote the random variables describing the face
values of the ivory dice. By Wald's theorem, we have

N
> x
k=1

E[X1]

(1+2+3+4+5+6) <1+2+3+4+5+6

e

)

41 /63



Conditional Expectation Given a o-Algebra
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Motivation
Suppose that a sample space €2 is partitioned into measurable sets
By, B,,...,B,.

We know know the expectation of a random variable X given that
one of the events By will happen, but we do not know which one.

We want to form a conditional expectation E[X | G] with
G =0(By, B,,...,B,) such that

E[X Ig,]

EX | Gl(w) = EX | B = 5 2

for we B. Then E[E[X | G]] = E[X].
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Conditional Expectation

Definition
Let F be a o-algebra with sub-o-algebra G. A random variable Y is

called a conditional expectation of X given G, written
Y = E[X | G] if and only if

@ Y is G-measurable
@ E[Y ;| =E[X ] forall Geg.
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Single Event

Example

Let A and B be events with 0 < Pr[A] < 1. If we define G = o(B),

then G = {J, B, B¢, Q}. Then

E[X 5], E[X le]

EX 191 = 318] & BB

I

Indeed, the right-hand side is clearly G-measurable. We have
E[E[X | Glls | = E[X Ig]

and
E[E[X | G]lg- ] = E[X Igc].
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Interpretation

Interpretation

We would like to think of E[X | G] as the average of X(w) over all
w which is consistent with the information encoded in G.
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o-Algebra Generated by a Random Variable

Example

Suppose that (€2, F,Pr) is a probability space with

Q ={a,b,c,d e f}, F=2% and Pr uniform. Define a random
variable X by

X(a) =1, X(b) =3, X(c) =3, X(d) =5, X(e) =5, X(f) =T7.
Suppose that another random variable Z is given by

Z(a) =3, Z(b) =3, Z(c) =3, Z(d) = 3, Z(e) =2, Z(f) = 2.

We want to determine E[X | G] with G = o(2).

47 /63



o-Algebra Generated by a Random Variable

Example
Since

Z(a) =3, Z(b) =3, Z(c) =3, Z(d) =3, Z(e) =2, Z(f) = 2,

the o-algebra o(Z) is generated by the event Z71(3) and its
complement

Z'3)={ab,c,d} and Z712)={e,f}.
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o-Algebra Generated by a Random Variable

Example

Now consider X on Z71(3) = {a, b, c, d} and its complement
X(a) =1, X(b) =3, X(c) =3, X(d) =5, X(e) =5, X(f) =7.
Since the distribution is uniform, we have

S
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Finite Number of Events

Example
Suppose that G is generated by a finite partition

817827"'7Bn

of the sample space 2. Then
E[X | §](w Z axl,

where E[X/ ]
B,

— 2 Bd _ E[X | Byl

= Pr[By] [X'| Bl
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Finite Number of Events

Example (Continued.)

If

k=1

then it is certainly G-measurable and

Therefore,

E[ELX | 6] = 3 E[X Js,] = E[X k] = E[X].
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Conditional Expectation: Main Questions

Definition
Let F be a o-algebra with sub-o-algebra G. A random variable Y is
called a conditional expectation of X given G, written
Y = E[X | G] if and only if
@ Y is G-measurable
@ E[Y Ig] = E[X Ig] for all G € G.

Questions
@ |Is the conditional expectation unique?

@ Does conditional expectation always exist?
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Uniqueness

Suppose that Y and Y’ are G-measurable random variables such
that
E[Y Ic] = E[X Ic] = E[Y' 5]

holds for all G € G. Then G = {Y > Y’} is an event in G. We have
0=E[Y 4] —E[Y' 4] = E[(Y — Y')Ia].
Since (Y — Y’)Ia = 0, we have Pr[A] = 0.

We can conclude that Y < Y’ almost surely (meaning with
probability 1). Similarly, Y/ < Y almost surely.

So Y’ = Y almost surely.

53 /63



Existence (Sketch for those who know integration on measures)

Let X = max{X,0} and X~ = X* — X. We can define two finite
measures on (£, F) by

Qi(A) = E[Xi Ia]
for all Ae F.

If A satisfies Pr[A] =0, then Q*(A) = 0.

Therefore, it follows from the Radon-Nikodym theorem that there
exist densities Y'* such that
QT (A) = f YEdPr=E[Y™ I4].
A
Now define the conditional expectation by Y = Y — Y.



Linearity

Proposition

E[aX + bY | G] = aE[X | G] + bE[Y | G].

Proof.

The right-hand side is G-measurable by definition, hence, for G € G

El/lc(aE[X | G] + bE[Y | G])] = aE[IcE[X | G]] + bE[IE[Y | G]]

= aE[IGX] + bE[/G Y]
_ E[le(aX + bY)].

[]
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Monotonicity
Proposition

If X = Y almost surely, then

E[X|G]=E[Y ]G]

Proof.
Let A denote the event {E[X | G] < E[Y | G]} € G.
Since we have X > Y, we get

E[/4a(X — Y)] > 0.

Therefore, Pr[A] = 0. O

For this proof, make sure that you understand what the event A encodes.
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Products

Proposition
IfE[|XY|] < o0 and Y is G-measurable, then

E[XY |G] = YE[X |G] and E[Y|G]=E[Y|Y]=Y.

The proof is a bit more involved.
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Tower Property

Proposition
Let G < F < A be o-algebras. Let X be an A-measurable random variable.
Then

E[E[X | F]|G] = E[E[X | G] | F] = E[X | G].

Proof.

The second equality follows from the product property with X =1 and
Y = E[X | G], since Y is F-measurable.

If Ae G, then A€ F and
E[laE[E[X | F] | G]]

E[/4E[X | F]]
E[/4 X]
E[/2E[X | G]]. O
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E[IX] | G] = [E[X | 4]




Independence

Proposition
If o(X) and G are independent o-algebras, so

Pr[A n B] = Pr[A] Pr[B]
for all A€ o(X) and B € G, then
E[X | G] = E[X].
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Lack of Information

Proposition
If Pr[A] € {0,1} for all A€ G, then

E[X | 6] = E[X].
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Best Prediction

The conditional expectation E[X | G] is supposed to be the “best”
prediction one can make about X if we only have the information
contained in o-algebra G.

Extremal Case 1
If o(X) < G, then
E[X | G] = X.

Extremal Case 2
If (X) and G are independent, then

E[X | G] = E[X].




Best Prediction

Proposition

Let G < A be o-algebras. Let X be an A-measurable random
variable with E[X?] < co. Then for any G-measurable random
variable Y with E[Y?] < oo, we have

E[(X — Y)*] = E[(X — E[X | G])*]
with equality if and only if Y = E[X | G].
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