Andreas Klappenecker

Texas A&M University

(©) 2018 by Andreas Klappenecker. All rights reserved.

1/49



2/49



o-Algebra

A o-algebra F is a collection of subsets of the sample space (2
such that the following requirements are satisfied:

S1 The empty set is contained in F.

S2 If a set E is contained in F, then its complement E€ is
contained in F.

S3 The countable union of sets in F is contained in F.

49



Probability Measure

Let F be a o-algebra over the sample space 2. A probability
measure on F is a function Pr: F — [0, 1] satisfying

P1 The certain event satisfies Pr[Q] = 1.

P2 If the events Eq, E;, ... in F are mutually disjoint, then

Pri{ ) Ed = ), PrlEd].
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Exercise

The smallest (with respect to inclusion) non-empty events
belonging to a o-algebra F are called atoms. Show that if F is a
finite o-algebra, then each event A in F is the union of finitely
many atoms.
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Solution
Seeking a contradiction, suppose that C is an event in F that is
not a union of finitely many atoms.

Let A denote the family of all atoms of F. Let B = | J A.

Since F is finite, the event C\B must contain an atomic event A.

However, this is impossible, since B is the (finite) union of all
atomic events.

6
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Definition of a Random Variable

Definition

Let F be a o-algebra over the sample space 2. A random
variable X is a function X:  — R such that the preimage
X~1(B) of each Borel set B in R is an event in F.

It suffices to show that
{ze Q| X(z) < x}

is an event contained in F for all x € R.
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Indicator Random Variables

Let (Q, F) be a measurable space.

Let A be a subset of 2. Then the indicator function
Ia: (22, F) — R given by

| ( ) 1 ifxeA
X frnd
A 0 otherwise.

is a random variable if and only if Ae F. We call /5 the indicator
random variable of the event A.



Simple Random Variable

A random variable is called simple if and only if it is a linear
combination of a finite number of indicator random variables with
disjoint support.

In other words, if X is a simple random variable, then there exist
pairwise disjoint events Ay, ..., A, and real numbers s;,...,s, such
that

X = zn: SkIAk-
k=1

Any nonnegative random variable can be approximated by a
sequence of simple random variables.
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Discrete Random Variable

A discrete random variable is a random variable with countable
range, which means that the set {X(z) |z € 2} is countable.

The convenience of a discrete random variable X is that one can

define events in terms of values of X, for instance in the form
X € A which is short for

{ze Q| X(z) € A}.

If the set A is a singleton, A = {x}, then we write X = x.
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Exercise
Let Q ={1,2,3,4} and F = {J,Q,{1},{2,3,4}}. Is X(x) =1+ x
a random variable with respect to the o-algebra F 7
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Solution
The preimage of {3} is

X7H({3}) = {2},

but this is not an event in F. So X is not a random variable.
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Expectation and Variance |
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Expectation Value

Definition
Let X be a discrete random variable over the probability space
(Q, F,Pr). The expectation value of X is defined to be

E[X]= ), aPrX=aq],
aeX(Q)

when this sum is unconditionally convergent in R, the extended real
numbers.

The expectation value is also called the mean of X.
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Linearity of Expectation

Proposition
For random variables X1, X5, ..., X,, we have

E[X1+ Xo+ -+ X,] = E[Xi] + E[Xo] + - - + E[X,].

For any real number a, we have

E[an] = aE[Xk]
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Pigeonhole Principle of Expectation

Proposition
A random variable cannot always be less than its expected value. J
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Pigeonhole Principle of Expectation

Proposition
A random variable cannot always be less than its expected value.

Proof.
Seeking a contradiction, suppose that X is a discrete random
variable that has values always less than o = E[X]. Then

E[X]= ), aPrX=0a]< > uPrX=a]=E[X],
aeX(Q) aeX(Q)

contradiction.
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Pigeonhole Principle of Expectation

Proposition
A random variable cannot always be less than its expected value.

Proof.
Seeking a contradiction, suppose that X is a discrete random
variable that has values always less than o = E[X]. Then

E[X]= ), aPrX=0a]< > uPrX=a]=E[X],
aeX(Q) aeX(Q)

contradiction.

Similarly, a random variable cannot always be larger than its expected value.
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Exercise

Consider the complete graph K, on n vertices. Show that there
exists a tournament on K, that has at least n!/2"! Hamiltonian
paths.

A tournament T, is a directed graph that is obtained from K|, by orienting each
edge. This is a round robin tournament with no draws, where an edge (u, v) in
the graph T, means that player u was beating player v.

A Hamiltonian path is a path of n — 1 edges that visits each vertex of T,
precisely once, vi — Vo, — vz — -+ — v,
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The exercise asserts that some combinatorial structure exists that
has a certain property. It asserts that there exists a tournament on
n points that has many (namely n!/2"~1) Hamiltonian paths.

For n = 10, the exercise asserts that there exists a tournament with

n! 10!

T = 59 > 7000

Hamiltonian paths. Of course, not all tournaments on n points will
have that many Hamiltonian paths.
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Solution

Construct a tournament on K,, by randomly orienting each edge in K, with
probability 1/2. Consider a random permutation 7w on n points. The vertices
(Vir1s Va2, - -5 Vo) form a Hamiltonian path if and only if v, beats vy (1) for all
k in the range 1 < k < n— 1. Let X, denote the indicator random variable for
the event that m yields a Hamiltonian path. Then

E[X,] = Pr[X, = 1] = 1/2"%.

Let X = > X, be the random variable counting Hamiltonian paths. Since there
are n! permutations, the expected number of Hamiltonian paths is

E[X] = )| E[X:] = nl/2"".

By the pigeonhole principle of expectation, it follows that some tournament must
have at least n!/2"~1 Hamiltonian paths.
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Concentration Inequalities |
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Markov's Inequality

Theorem (Markov's Inequality)

If X is a nonnegative random variable and t a positive real number,

then Elx
PriX > t] < %

Corollary (Markov's Inequality)

If X is a nonnegative random variable and t a positive real number,
then

Pr[X = tE[X]] <

~ | /=
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Chebychev's Inequality

Theorem (Chebychev's inequality)
If X is a random variable, then

E[(X — E[X])?] _ Var[ X]
t2 t2

Pr[|X — E[X]| = t] = Pr[(X — E[X])? = t?] <
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Chernoff Bounds

Theorem (Chernoff Bounds)

Let X be the sum of n independent indicator random variables
X17 X27 o

Then

Pr[X > (1+0)u]
Pr[X < (1—0)u]

—62u/3
e u/’

_ 52
e K2,

NN

.., Xn, where E[Xi] = px. Let u = E[X] = >_; E[Xk].
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Naming of the Bounds

Exercise
Who first proved Markov's, Chebychev's, and Chernoff's inequality?
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Naming of the Bounds

Exercise
Who first proved Markov's, Chebychev's, and Chernoff's inequality?l

Solution
@ Markov's inequality was first proved by Chebychev.
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Naming of the Bounds

Exercise
Who first proved Markov's, Chebychev's, and Chernoff's inequality?

Solution
@ Markov's inequality was first proved by Chebychev.

@ Chebychev'’s inequality was first proved by Bienaymé.
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Naming of the Bounds

Exercise
Who first proved Markov's, Chebychev's, and Chernoff's inequality?

Solution
@ Markov's inequality was first proved by Chebychev.

@ Chebychev'’s inequality was first proved by Bienaymé.
@ Chernoff’s inequality was first proved by Rubin.

25 /49



26 /49



Conditional Expectation given an Event

Definition
The conditional expectation of a discrete random variable X
given an event A is denoted as E[X | A] and is defined by

E[X | Al = ZxPr — x| Al.
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Computing Expectations

We can compute the expected value of X as a sum of conditional
expectations. This is similar to the law of total probability.

Proposition
If X and Y are discrete random variables, then

E[X] = ) E[X | Y = y]Pr[Y = y].

y
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Definition

Definition
Let X and Y be two discrete random variables.

The conditional expectation E[X | Y] of X given Y is the
random variable defined by

E[X | Y](w) = E[X|Y = Y()].

29 /49



Law of the Iterated Expectation

Proposition

E[E[X| Y]] = E[X].

Proof.

E[E[X | Y]] = ) E[E[X | Y]|Y = y]Pr[Y = y]
= YE[X|Y =y]PrY = y]

= E[X]
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Wald's Theorem

Theorem
Suppose that Xy, X5, ... are independent random variables, all with
the same mean. Suppose that N is a nonnegative, integer-valued
random variable that is independent of the X;'s. If E[Xi] < o0 and
E[N] < oo, then

N

> x

k=1

E — E[N]E[X4].
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Probability Generating Functions

Definition

Let X be a discrete random variable defined on a probability space
with probability measure Pr. Assume that X has non-negative
integer values. The probability generating function of X is

defined by
Gx(z) = E[2X] = ) Pr[X = k]z*.
k=0

This series converges for all z with |z| < 1.
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Expected Value

Expectation
The expectation value can be expressed by

Z = Gx(1), (1)

where G (z) denotes the derivative of Gx(z).

Indeed, Gy (z Z kPr[X = k]2t = Y kPr[X =
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The Class RP of Randomized Polynomial Time DP

Definition
Let £ be a constant in the range 0 < e < 1/2.
The class RP consists of all languages L that do have a
polynomial-time randomized algorithm A such that
@ x € L implies Pr[A(x) accepts] > 1 — ¢,
@ x ¢ L implies Pr[A(x) rejects] = 1.

One-Sided Error
Randomized algorithms in RP may err on 'yes' instances, but not
on 'no’ instances.
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The Class co-RP of Randomized Polynomial Time DP
Definition
Let € be a constant in the range 0 < e < 1/2.
The class co-RP consists of all languages L whose complement L is
in RP. In other words, L is in co-RP if and only if there exists a
polynomial-time randomized algorithm A such that
@ x € L implies Pr[A(x) accepts] = 1,
@ x ¢ L implies Pr[A(x) rejects] > 1 —¢.

One-Sided Error
Randomized algorithms in co-RP may err on 'no’ instances, but
not on 'yes' instances.




The Class ZPP of Zero-Error Probabilistic Polynomial Time DP

Definition
The class ZPP consists of all languages L such that there exists a
randomized algorithm A that always decides L correctly and runs in

expected polynomial time.

38 /49



The Class BPP of Bounded-Error Probabilistic Polynomial Time DP

Definition
Let € be a constant in the range 0 < ¢ < 1/2.
The class BPP consists of all languages L such that there exists a
polynomial-time randomized algorithm A such that
@ x € L implies Pr[A(x) accepts] > 1 — ¢,
@ x ¢ L implies Pr[A(x) rejects] > 1 —¢.

39 /49



Overview

RP
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Karger's Minimum Cut Algorithm

Contract(G)

Require: A connected loopfree multigraph G = (V, E) with at
least 2 vertices.

1. while |V| > 2 do
2. Select e € E uniformly at random,;
3 G:=G/e
2. end while
5. return |E]|.

Ensure: An upper bound on the minimum cut of G.
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Main Idea of the Analysis

Iterated conditional probabilities:

Pr Lﬂl Eg] _ (r]n—[z Pr [Em‘ nﬁl Eg]> PrlEL].

/=1
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Karger's Minimum Cut Algorithm

Karger's contraction algorithm is the prototypical example of a
Monte Carlo type algorithm. Study it carefully!
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Quicksort

Suppose that we want to sort an array A[1l..n| of length n.

Quicksort picks a pivot element p uniformly at random.

Then partitions the array A into three parts: left, pivot, an d right.

<p|<p|l---|<plp|>p|>p| - |>pP

Partition requires n — 1 comparisons with the pivot element p.

Then quicksort recursively sorts left and right parts.
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Analysis of Quicksort

Proposition
The expected number of comparisons made by randomized
quicksort on an array of size n is at most 2nln n.
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Quicksort

Randomized quicksort is the prototypical example of a Las Vegas
algorithm. Study the analysis carefully!
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Randomized Data Structures |
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Skip Lists
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