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Probability Theory
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σ-Algebra

A σ-algebra F is a collection of subsets of the sample space Ω
such that the following requirements are satisfied:

S1 The empty set is contained in F .

S2 If a set E is contained in F , then its complement E c is
contained in F .

S3 The countable union of sets in F is contained in F .
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Probability Measure

Let F be a σ-algebra over the sample space Ω. A probability
measure on F is a function Pr : F Ñ r0, 1s satisfying

P1 The certain event satisfies PrrΩs “ 1.

P2 If the events E1,E2, . . . in F are mutually disjoint, then

Prr
8
ď

k“1

Eks “

8
ÿ

k“1

PrrEks.
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Exercise

The smallest (with respect to inclusion) non-empty events
belonging to a σ-algebra F are called atoms. Show that if F is a
finite σ-algebra, then each event A in F is the union of finitely
many atoms.
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Solution
Seeking a contradiction, suppose that C is an event in F that is
not a union of finitely many atoms.

Let A denote the family of all atoms of F . Let B “
Ť

A.

Since F is finite, the event CzB must contain an atomic event A.
However, this is impossible, since B is the (finite) union of all
atomic events.
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Random Variables
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Definition of a Random Variable

Definition
Let F be a σ-algebra over the sample space Ω. A random
variable X is a function X : Ω Ñ R such that the preimage
X´1pBq of each Borel set B in R is an event in F .

It suffices to show that

tz P Ω |X pzq ď xu

is an event contained in F for all x P R.
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Indicator Random Variables

Let pΩ,Fq be a measurable space.

Let A be a subset of Ω. Then the indicator function
IA : pΩ,Fq Ñ R given by

IApxq “

#

1 if x P A

0 otherwise.

is a random variable if and only if A P F . We call IA the indicator
random variable of the event A.
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Simple Random Variable

A random variable is called simple if and only if it is a linear
combination of a finite number of indicator random variables with
disjoint support.

In other words, if X is a simple random variable, then there exist
pairwise disjoint events A1, . . . ,An and real numbers s1, . . . , sn such
that

X “
n
ÿ

k“1

sk IAk
.

Any nonnegative random variable can be approximated by a
sequence of simple random variables.
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Discrete Random Variable

A discrete random variable is a random variable with countable
range, which means that the set tX pzq | z P Ωu is countable.

The convenience of a discrete random variable X is that one can
define events in terms of values of X , for instance in the form
X P A which is short for

tz P Ω |X pzq P Au.

If the set A is a singleton, A “ txu, then we write X “ x .
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Exercise

Let Ω “ t1, 2, 3, 4u and F “ tH,Ω, t1u, t2, 3, 4uu. Is X pxq “ 1` x
a random variable with respect to the σ-algebra F?
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Solution

The preimage of t3u is

X´1
pt3uq “ t2u,

but this is not an event in F . So X is not a random variable.
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Expectation and Variance
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Expectation Value

Definition
Let X be a discrete random variable over the probability space
pΩ,F ,Prq. The expectation value of X is defined to be

ErX s “
ÿ

αPX pΩq

αPrrX “ αs,

when this sum is unconditionally convergent in R, the extended real
numbers.

The expectation value is also called the mean of X .
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Linearity of Expectation

Proposition

For random variables X1,X2, . . . ,Xn, we have

ErX1 ` X2 ` ¨ ¨ ¨ ` Xns “ ErX1s ` ErX2s ` ¨ ¨ ¨ ` ErXns.

For any real number a, we have

EraXks “ aErXks.
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Pigeonhole Principle of Expectation

Proposition

A random variable cannot always be less than its expected value.

Proof.
Seeking a contradiction, suppose that X is a discrete random
variable that has values always less than µ “ ErX s. Then

ErX s “
ÿ

αPX pΩq

αPrrX “ αs ă
ÿ

αPX pΩq

µPrrX “ αs “ ErX s,

contradiction.

Similarly, a random variable cannot always be larger than its expected value.
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Exercise
Consider the complete graph Kn on n vertices. Show that there
exists a tournament on Kn that has at least n!{2n´1 Hamiltonian
paths.

A tournament Tn is a directed graph that is obtained from Kn by orienting each
edge. This is a round robin tournament with no draws, where an edge pu, vq in
the graph Tn means that player u was beating player v .

A Hamiltonian path is a path of n ´ 1 edges that visits each vertex of Tn

precisely once, v1 Ñ v2 Ñ v3 Ñ ¨ ¨ ¨ Ñ vn.

18 / 49



The exercise asserts that some combinatorial structure exists that
has a certain property. It asserts that there exists a tournament on
n points that has many (namely n!{2n´1) Hamiltonian paths.

For n “ 10, the exercise asserts that there exists a tournament with

n!

2n´1
“

10!

29
ą 7000

Hamiltonian paths. Of course, not all tournaments on n points will
have that many Hamiltonian paths.
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Solution

Construct a tournament on Kn by randomly orienting each edge in Kn with
probability 1{2. Consider a random permutation π on n points. The vertices
pvπ1, vπ2, . . . , vπnq form a Hamiltonian path if and only if vπk beats vπpk`1q for all
k in the range 1 ď k ď n ´ 1. Let Xπ denote the indicator random variable for
the event that π yields a Hamiltonian path. Then

ErXπs “ PrrXπ “ 1s “ 1{2n´1.

Let X “
ř

Xπ be the random variable counting Hamiltonian paths. Since there
are n! permutations, the expected number of Hamiltonian paths is

ErX s “
ÿ

πPSn

ErXπs “ n!{2n´1.

By the pigeonhole principle of expectation, it follows that some tournament must
have at least n!{2n´1 Hamiltonian paths.
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Concentration Inequalities
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Markov’s Inequality

Theorem (Markov’s Inequality)

If X is a nonnegative random variable and t a positive real number,
then

PrrX ě ts ď
ErX s

t
.

Corollary (Markov’s Inequality)

If X is a nonnegative random variable and t a positive real number,
then

PrrX ě tErX ss ď
1

t
.
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Chebychev’s Inequality

Theorem (Chebychev’s inequality)

If X is a random variable, then

Prr|X ´ E rX s| ě ts “ PrrpX ´ E rX sq2 ě t2s ď
ErpX ´ E rX sq2s

t2
“

VarrX s

t2
.
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Chernoff Bounds

Theorem (Chernoff Bounds)

Let X be the sum of n independent indicator random variables
X1,X2, . . . ,Xn, where ErXks “ pk . Let µ “ ErX s “

řn
k“1 ErXks.

Then

PrrX ą p1` δqµs ď e´δ
2µ{3,

PrrX ă p1´ δqµs ď e´δ
2µ{2.
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Naming of the Bounds

Exercise
Who first proved Markov’s, Chebychev’s, and Chernoff’s inequality?

Solution
1 Markov’s inequality was first proved by Chebychev.

2 Chebychev’s inequality was first proved by Bienaymé.

3 Chernoff’s inequality was first proved by Rubin.
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Conditional Expectation
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Conditional Expectation given an Event

Definition
The conditional expectation of a discrete random variable X
given an event A is denoted as ErX | As and is defined by

ErX | As “
ÿ

x

x PrrX “ x | As.
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Computing Expectations

We can compute the expected value of X as a sum of conditional
expectations. This is similar to the law of total probability.

Proposition

If X and Y are discrete random variables, then

ErX s “
ÿ

y

ErX | Y “ y sPrrY “ y s.
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Definition

Definition
Let X and Y be two discrete random variables.

The conditional expectation ErX | Y s of X given Y is the
random variable defined by

ErX | Y spωq “ ErX | Y “ Y pωqs.
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Law of the Iterated Expectation

Proposition

ErErX | Y ss “ ErX s.

Proof.

ErErX | Y ss “
ÿ

y

ErErX | Y s|Y “ y sPrrY “ y s

“
ÿ

y

ErX | Y “ y sPrrY “ y s

“ ErX s
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Wald’s Theorem

Theorem
Suppose that X1,X2, . . . are independent random variables, all with
the same mean. Suppose that N is a nonnegative, integer-valued
random variable that is independent of the Xi ’s. If ErX1s ă 8 and
ErNs ă 8, then

E

«

N
ÿ

k“1

Xi

ff

“ ErNsErX1s.
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Probability Generating Functions
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Probability Generating Functions

Definition
Let X be a discrete random variable defined on a probability space
with probability measure Pr. Assume that X has non-negative
integer values. The probability generating function of X is
defined by

GX pzq “ ErzX s “
8
ÿ

k“0

PrrX “ kszk .

This series converges for all z with |z | ď 1.
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Expected Value

Expectation

The expectation value can be expressed by

ErX s “
8
ÿ

k“1

k PrrX “ ks “ G 1X p1q, (1)

where G 1X pzq denotes the derivative of GX pzq.

Indeed, G 1X pzq “
8
ÿ

k“0

k PrrX “ kszk´1
“

8
ÿ

k“1

k PrrX “ kszk´1.
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Complexity Classes
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The Class RP of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range 0 ď ε ď 1{2.

The class RP consists of all languages L that do have a
polynomial-time randomized algorithm A such that

1 x P L implies PrrApxq acceptss ě 1´ ε,

2 x R L implies PrrApxq rejectss “ 1.

One-Sided Error
Randomized algorithms in RP may err on ’yes’ instances, but not
on ’no’ instances.
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The Class co-RP of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range 0 ď ε ď 1{2.
The class co-RP consists of all languages L whose complement L is
in RP. In other words, L is in co-RP if and only if there exists a
polynomial-time randomized algorithm A such that

1 x P L implies PrrApxq acceptss “ 1,

2 x R L implies PrrApxq rejectss ě 1´ ε.

One-Sided Error
Randomized algorithms in co-RP may err on ’no’ instances, but
not on ’yes’ instances.
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The Class ZPP of Zero-Error Probabilistic Polynomial Time DP

Definition
The class ZPP consists of all languages L such that there exists a
randomized algorithm A that always decides L correctly and runs in
expected polynomial time.
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The Class BPP of Bounded-Error Probabilistic Polynomial Time DP

Definition

Let ε be a constant in the range 0 ď ε ă 1{2.

The class BPP consists of all languages L such that there exists a
polynomial-time randomized algorithm A such that

1 x P L implies PrrApxq acceptss ě 1´ ε,

2 x R L implies PrrApxq rejectss ě 1´ ε.
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Overview

PSPACEΣ2 X Π2

NP

BPP

coNP

RP

coRP

ZPPP

40 / 49



Randomized Algorithms
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Karger’s Minimum Cut Algorithm

Contract(G )

Require: A connected loopfree multigraph G “ pV ,E q with at
least 2 vertices.

1: while |V | ą 2 do
2: Select e P E uniformly at random;
3: G := G/e;
4: end while
5: return |E |.

Ensure: An upper bound on the minimum cut of G .
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Main Idea of the Analysis

Iterated conditional probabilities:

Pr

«

n
č

`“1

E`

ff

“

˜

n
ź

m“2

Pr
”

Em

ˇ

ˇ

ˇ

m´1
č

`“1

E`

ı

¸

PrrE1s.
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Karger’s Minimum Cut Algorithm

Karger’s contraction algorithm is the prototypical example of a
Monte Carlo type algorithm. Study it carefully!
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Quicksort

Suppose that we want to sort an array Ar1..ns of length n.

Quicksort picks a pivot element p uniformly at random.

Then partitions the array A into three parts: left, pivot, an d right.

ă p ă p ¨ ¨ ¨ ă p p ą p ą p ¨ ¨ ¨ ą p

Partition requires n ´ 1 comparisons with the pivot element p.

Then quicksort recursively sorts left and right parts.
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Analysis of Quicksort

Proposition

The expected number of comparisons made by randomized
quicksort on an array of size n is at most 2n ln n.
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Quicksort

Randomized quicksort is the prototypical example of a Las Vegas
algorithm. Study the analysis carefully!
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Randomized Data Structures
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Skip Lists

´8

´8

´8

´8

11 15 17 28 31 55 56 61 `8

`8

`8

`8

31

31

31

11 15 55 56
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