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The Idea

Suppose that we want to prove the existence of a combinatorial
object that has certain properties.

In the probabilistic method, we approach this problem by defining
a sample space of combinatorial objects and showing that a
randomly chosen element of this space has the desired properties
with positive probability.
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Ramsey Numbers

The Problem n = R(a, b)

What is the smallest number n = R(a, b) such that in any set of
n people there must be

@ a mutually aquainted people or

@ b mutual strangers.

The numbers R(a, b) are called Ramsey numbers.



Ramsey Numbers

We can model a set of n people with a complete graph. We color
an edge (/,j) red if / and j are acquainted and blue otherwise.

Reformulated Problem

Let R(a, b) be the smallest integer n such that in any edge-coloring
of K, with the two colors red and blue, there exists

Q@ an induced red K, subgraph or
@ an induced blue K} subgraph.




Example
Proposition

R(2,n) =n

Proof.

This one is easy. Any coloring of K, has either has (a) one or more red edges, so
it contains a red Kj, or (b) it does not contain any red edges, but then it
contains a blue K,,.
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We can also formulate it as foIIows. At a party with n people, there are either
two people knowing each other or they are all mutual strangers. O]
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Example

Proposition
R(3,3) > 5
B
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In a party of 5 people, it can happen that there are no 3 people that
are mutually aquainted and no 3 people that are mutually strangers.



Example

Proposition
R(3, 3) = 6.
Proof.

It suffices to show that R(3,3) < 6. Let G = (V, E) be the red induced
subgraph of Ks. Let u € V be an arbitrary vertex. Then there are two cases:

@ Suppose that the set N(u) = {v € V|(u, v} € E} has at least 3 elements.
Then either N(u) is an independent set of strangers and the proposition
holds, or we have two adjacent vertices v, v € N(u), in which case
{u, v1, v} is a clique of friends and the proposition also holds.

@ Suppose that the set N(u) = {v € V|(u, v) € E} has at most 2
elements. Then by case (1), there is a clique or a independent set of size
3 in the complement graph of G and thus also in G.

In any case, we have that R(3,3) < 6, as claimed. ]




Ramsey Theory

Finding the precise value of the Ramsey numbers R(a, b) is at the
heart of Ramsey theory in combinatorics.

It is known that K|, contains a red K, or a blue K}, induced subgraph
for all large n, but finding the precise value of R(a, b) is difficult.

R(3,3) =6, R(4,4) =18, R(55)=?



Lower Bound on Ramsey Numbers

Proposition (Erdés)
If (2)21-() < 1, then R(k, k) > n.
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Proof.

Consider K, and a random 2-coloring on its edges, namely we color
an edge red with probability 1/2, and blue with probability 1/2.
For any k-subset S of vertices, let Ms be the event that the
induced subgraph on S is monochromatic. Then,

Pr[Ms] = Pr[S red] + Pr[S blue| = 1k + 1k —21-(2),
2(2) 2(2)

Thus, the probability that some k-subset forms a monochromatic
k

subgraph is at most (2)21_(5). Since (2)21_(2) < 1, there exists
some 2-coloring for which there is no monochromatic K. In other
words, R(k, k) > n. O




Hamiltonian Paths in Tournaments |
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Tournaments

Definition
A tournament T, is a directed graph that is obtained from
undirected complete graph K|, by orienting each edge.

The directed graph T, represents a round robin tournament with n players. An
edge (u, v) in the graph T, means that player u has beaten player v.
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Hamiltonian Paths
Definition
A Hamiltonian path is a path of n — 1 edges that visits each
vertex of T, precisely once, vi > v, —»> v3 — -+ — v,
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Abundance of Hamiltonian Paths

Our goal is to show that there exists a tournament that has an
abundance of Hamiltonian paths.
Proposition

Consider the complete graph K, on n vertices. There exists a
tournament on K, that has at least n!/2"~1 Hamiltonian paths.
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Pigeonhole Principle of Expectation

Proposition
A random variable cannot always be less than its expected value. J
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Pigeonhole Principle of Expectation

Proposition
A random variable cannot always be less than its expected value.

Proof.
Seeking a contradiction, suppose that X is a discrete random
variable that has values always less than o = E[X]. Then

E[X]= ), aPrX=0a]< > uPrX=a]=E[X],
aeX(Q) aeX(Q)

contradiction.




Pigeonhole Principle of Expectation

Proposition
A random variable cannot always be less than its expected value.

Proof.
Seeking a contradiction, suppose that X is a discrete random
variable that has values always less than o = E[X]. Then

E[X]= ), aPrX=0a]< > uPrX=a]=E[X],
aeX(Q) aeX(Q)

contradiction.

Similarly, a random variable cannot always be larger than its expected value.



Proof.

Construct a tournament on K, by randomly orienting each edge in K|, with
probability 1/2. Consider a random permutation 7 on n points. The vertices
(Vir1s Va2, - - -5 V) form a Hamiltonian path if and only if v;x beats vy (1) for all
k in the range 1 < k < n— 1. Let X, denote the indicator random variable for
the event that 7 yields a Hamiltonian path. Then

E[X,] = Pr[X, = 1] = 1/2"%.

Let X = > X, be the random variable counting Hamiltonian paths. Since there
are n! permutations, the expected number of Hamiltonian paths is

E[X] = )| E[X:] = nl/2"".

By the pigeonhole principle of expectation, it follows that some tournament must
have at least n!/2"~1 Hamiltonian paths.
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Large Cuts

Problem
Given an undirected graph G. Find a maximum cut in G. J

19/35



Large Cuts

Problem
Given an undirected graph G. Find a maximum cut in G.

The problem is NP-hard, so there is little hope to find an efficient
randomized algorithm to solve it. We can consider a weaker version.
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Large Cuts

Problem
Given an undirected graph G. Find a maximum cut in G. ’

The problem is NP-hard, so there is little hope to find an efficient
randomized algorithm to solve it. We can consider a weaker version.

Given an undirected graph G with m edges. Find a large cut that

Problem
has at least m/2 edges.




Large Cuts

Proposition

Given an undirected graph G = (V, E) with m edges, there exists a
partition of V into two disjoint sets A and B such that at least m/2
edges cross the cut (A, B).




Proof.

For each vertex, flip a fair coin and put the vertex in A if the coin
shows heads, and put the vertex in B if the coin shows tails. Let
e, e, ..., €en be an enumeration of the edges in E. Define the
indicator random variable X

X, — 1 if edge k crosses the cut (A, B),
‘ 0 otherwise




Proof. (Continued)
The probability that the edge crosses the cut (A, B) is 1/2; hence,

E[X,] — %

Let S(A, B) denote the size of the cut (A, B). Then

Z Xel =5

k=1

m

E D, X

k=1

E[S(

Thus, there exists a cut (A, B) of size m/2. O
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Probabilistic Circuits

Definition

A probabilistic circuit has n standard input variables xq, ..., x,
and m random inputs. The random inputs are chosen uniformly at
random from {0, 1}.

We say that C(x) computes are boolean function
f:{0,1}" — {0,1} if and only if

Pr[C(x) = f(x)] = 3/4

holds for all inputs x € {0,1}".

In other words, C(x) is a boolean circuit that has access to m coin flips.



Question
Can probabilistic circuits for computing a boolean function f(x)
have a much smaller circuit size than deterministic circuits?

25 /35



Majority

Definition
The majority function Maj, on n boolean variables is defined as

Majn(xl, X2y

1 ifxy+x+ - +x,>[n/2],
7Xn) = }
0 otherwise.
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Probability Amplification

Proposition
Let X1, X5, ..., X, be independent Bernoulli random variables with

PriXk =1] =1/2+¢
for all k in the range 1 < k < m. Then

Pr[Maj(Xy, Xo, ..., Xp) = 0] < e 2.




Proof.
Let F be the family of all subsets of {1,2,..., m} of size > [m/2].
Let us denote the probability

Pr[Maj(X17 X27 o oc 7Xm) = O]

that most random variables have the value 0 shortly by g.
We can express g explicitly as follows:

q= Z Pr[Xx = 0 for all k € S]Pr[Xx =1 for all k¢ S]
SeF

= Y. (1/2=&)*l(1/2 + &)™

SeF




Proof. (Continued)
If we multiply each term of the latter sum by the factor

1/2 + e\ Pl
> 1,
(32-)

then we get the bound

q= 2(1/2 — €)|5|(1/2 4 6)m—|5|

SeF

< Z (1/2 — &)™2(1/2 + )™2.

SeF




Proof. (Continued)
Since F contains at most 2 sets, we can rewrite the sum as

g< Y (1/2—e)™*(1/2+ )™
SeF

< 2™(1/2 — €)™2(1/2 + €)™
= (1 —2¢)™?(1 4 2¢)™?

_ (1 . 462)m/2 < e—462m/2 _ e—2e2m

which proves the claim.
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Proposition (Adelman)

If a boolean function f of n variables can be computed by a
probabilistic circuit of size M, then f can be computed by a
deterministic circuit of size at most 8nM.
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Proof
Let C be a probabilistic circuit that computes f.

Take m independent copies of (i, Gy, ..., G, of C with their own
independent random inputs.

Let C’ denote the probabilistic that computes the majority of the
results of the m copies,

C'(x) = Maj(Ci(x), G(x), ..., Cn(x)).
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Proof. (Continued)
Fix an input v € F5. Let X denote the indicator random variable
for the event

Ck(v) = f(v).
Then Pr[ Xy = 1] = 1/2 + € with € = 1/4.
Since C’ uses majority logic, it will err with probability
Pr[C'(v) # f(v)] < e 2m = e~ ™/8,
By the union bound, C’ will err for some input with probability

Pr[3ve F}: C'(v) # f(v)] < 2"e ™8,
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Proof. (Continued)
If we choose m = 8n, then

PrAve F): C'(v) # f(v)] <2"e " < 1.

We can conclude that there must exist some assignment v of
random inputs such that

C'(v) =f(v)

for all v € F3. If we fix the random inputs in C’ to the values given
in v, then this is a deterministic circuit of size 8nM, as claimed.?

“If we want to be picky, then we should add O(log(8n)) gates to implement the majority logic.
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