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Estimating π

We can try to estimate the value of π in the following way.

Choose a point pX ,Y q uniformly at random in the 2ˆ 2 square
centered at p0, 0q. So X and Y are uniformly distributed random
variables on the interval r´1, 1s.

Define an indicator random variable Z for being in the unit circle by

Z “

#

1 if
?
X 2 ` Y 2 ď 1,

0 otherwise.

Then

PrrZ “ 1s “
area of unit circle

area of 2ˆ 2 square
“
π

4
.
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Monte Carlo Approach for Estimating π
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Estimating π

If we run this experiment m times with independently chosen
coordinates, and Zk is the value of the k-th run, then we expect for
W “

ř

Zk to average

ErW s “ E

«

m
ÿ

k“1

Zk

ff

“

m
ÿ

k“1

ErZks “
mπ

4
.

Then W 1 “ p4{mqW is a natural estimate for π.

4 / 45



Relative Errror for Estimating π

By the Chernoff bound, the relative error is given by

Prr|W 1
´ π| ě επs “ Pr

”
ˇ

ˇ

ˇ
W ´

mπ

4

ˇ

ˇ

ˇ
ě
εmπ

4

ı

“ Prr|W ´ ErW s| ě εErW ss

ď 2e´mπε
2{12.

Thus, if we use sufficiently many repetitions m, then we get an
approximation to π that is as tight as we wish.

5 / 45



pε, δq-Approximations

Definition

A randomized algorithm gives an pε, δq-approximation for a value V
if the output X of the algorithm satisfies

Prr|X ´ V | ď εV s ě 1´ δ.
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Estimating π

Example

Our randomized algorithm for estimating π provides an
pε, δq-algorithm if we choose

m ě
12 lnp2{δq

πε2

then
PrrW 1

´ π| ě επs ď 2e´mπε
2{12

ď δ

or
PrrW 1

´ π| ď επs ě 1´ 2e´mπε
2{12

ě 1´ δ.
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Proposition

Let X1, . . . ,Xm be independent and identically distributed indicator
random variables, with µ “ ErXks. If m ě 3 lnp2{δq

ε2µ , then

Pr

«ˇ

ˇ

ˇ

ˇ

ˇ

1

m

m
ÿ

k“1

Xk ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ě εµ

ff

ď δ.

In other words, m samples provide an pε, δq-approximation for µ.
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Fully Polynomial Randomized Approximation
Schemes
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Motivation

Idea
In general, we want an algorithm that approximates not just a
single value but instead takes as input a problem instance and
approximates the solution value for that problem. Here we are
considering problems that map inputs x to values V pxq.

Example

Given an input graph, we might want to know an approximation to
the number of independent sets in the graph.
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FPRAS

Definition
A fully polynomial randomized approximation scheme (or shortly FPRAS)
for a problem is a randomized algorithm for which, given an input x and any
parameters ε and δ with 0 ă ε, δ ă 1, the algorithm outputs an

pε, δq-approximation to V pxq

in a time that is polynomial in 1{ε, lnp1{δq, and the size of the input x .
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The DNF Counting Problem
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DNF Counting

Problem
Suppose that you are given a formula f in disjunctive normal form,
that is, f is a disjunction of clauses that consist of conjunctions of
literals.

Count the number of satisfying assignments to f .
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DNF Counting

Example

Consider the following example of a boolean function in DNF:

f px1, x2, x3, x4q “ px1 ^ x2 ^ x3q _ px2 ^ x4q _ px1 ^ x3 ^ x4q.

Finding a satisfying assignment is always easy in DNF: Choose a
clause C and assign truth values such that each literal in C
evaluate to true. For example, if we choose

vpx1q “ T , vpx2q “ F , vpx3q “ T , vpx4q “ T {F ,

then the first clause evaluates to true and hence vpf q “ T .
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DNF Counting

Example

Counting the number of satisfying assignment of a boolean function
in DNF is not easy.

Indeed, if it where, then we could solve any instance g of SAT in n
variables. Indeed, we could negate g use de Morgan’s laws to
obtain a DNF formula. Then g is satisfiable if and only if g has less
than 2n satisfying assignments.

In fact, counting the number of satisfying assignments to DNF
formulas is #P-complete.
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DNF Counting: A First Attempt

DNF Counting Algorithm I:
Input: A DNF formula F with n variables.
Output: Y “ an approximation of cpF q.

1 X “ 0.
2 for k “ 1 to m do

1 Generate a random assignment for the n variables, chosen uniformly at random
from all 2n possible assignments.

2 If the random assignment satisfies F , then X “ X ` 1.

3 return Y “ pX {mq2n.
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DNF Counting: A First Attempt

Let Xk be 1 if the k-th iteration in the algorithm generated a satisfying
assignment and 0 otherwise. Then X “

řm
k“1 Xk where the Xk are independent

0-1 random variables that each take the value 1 with probability cpF q{2n. Hence,
by linearity of expectations,

ErY s “
ErX s2n

m
“ cpF q.

It is not difficult to see that X {m gives an pε, δq-approximation of cpF q{2n, and
hence that Y gives an pε, δq-approximation of cpF q, when

m ě
2 ¨ 2n lnp2{δq

ε2cpF q
.
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DNF Counting: A First Attempt

Problem

If cpF q is small, then the number of repetitions m is exponentially
large, as

m ě
2 ¨ 2n lnp2{δq

ε2cpF q
.
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DNF Counting: A Better Approach

We now revise our sampling procedure to obtain an FPRAS.

Let
F “ C1 _ C2 _ ¨ ¨ ¨ _ Ct .

We omit clauses that include a variable and their negation.

If the clause Ck has `k literals, then it is satisfied by

2n´`k

assignments.
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DNF Counting: A Better Approach

Let Sk the set of assignments that satisfy clause Ck .

Let U “ tpk , vq | 1 ď k ď t, v P Sku

We know |U | and |Sk |, since

|U | “
t
ÿ

k“1

|Sk |

and |Sk | “ 2n´`k .
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DNF Counting: A Better Approach

Goal
We want to estimate

cpF q “

ˇ

ˇ

ˇ

ˇ

ˇ

t
ď

k“1

Sk

ˇ

ˇ

ˇ

ˇ

ˇ

For this purpose, we investigate the following subset of U :

S “ tpk , vq | 1 ď k ď t, v P Sk , v R Sj for j ă ku.

In S , each assignment v occurs just once, so

|cpF q| “ |S |.
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DNF Counting: A Better Approach

We can estimate |S | by estimating the ratio |S |{|U |. We find this
ratio by sampling from U uniformly at random. Since an assigment
can occur in at most t sets Sk , we have

|S |

|U |
ě

1

t
.

So S is relatively dense in U .
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DNF Counting: A Better Approach

How do we sample uniformly at random from U?

Choose k with probability |Sk |{|U |. Then choose a satisfying
assignment uniformly at random from Sk .

Prrpk , vq is chosens “ Prrk is chosensPrrv is chosen | k is chosens

“
|Sk |

|U |
¨

1

|Sk |

“
1

|U |
.
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DNF Counting: A Better Approach

DNF Counting Algorithm II:
Input: A DNF formula F with n variables.
Output: Y “ an approximation of cpF q.

1 X “ 0.
2 for k “ 1 to m do

1 Choose i with probability |Si |{|U|, and an assignment v from Si uniformly at
random.

2 If v is not in any Sj for j ă i , then X “ X ` 1.

3 return Y “ pX {mq|U |.
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DNF Counting: A Better Approach

Proposition

The DNF counting algorithm II is a fully polynomial randomized
approximation scheme for the DNF counting problem when
m “ rp3t{ε2q lnp2{δqs.

The reason is that we choose pairs pi , vq uniformly at random from
U . For the given number of repetitions m, the algorithm is an
pε, δq-approximation to cpF q “ |S |{|U | for each boolean function F .
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From Approximate Sampling to Approximate
Counting
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From Sampling to Approximate Counting

The example of DNF formulas shows that there is a fundamcntal
connection between being able to sample from an appropriate
space and being able to count the number of objects with some
property in that space.

If you can sample the solutions to a so-called “self-reducible”
combinatorial problem almost uniformly, then you can construct a
randomized algorithm that approximately counts the number of
solutions to that problem.
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ε-Uniform Samplers

Definition
Let w be the random output of a sampling algorithm for a finite
sample space Ω. We say that the sampling algorithm creates an
ε-uniform sample of Ω if and only if

ˇ

ˇ

ˇ

ˇ

Prrw P Ss ´
|S |

|U |

ˇ

ˇ

ˇ

ˇ

ď ε.

A sampling algorithm is a fully polynomial almost uniform
sampler (or shortly FPAUS) if and only if given an input x and a
parameter ε ą 0, it creates an ε-uniform sample of Ωpxq and runs in
time polynomial in lnp1{εq and the size of the input x .
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Approximate Counting and Approximate Sampling

The Big Idea

FPRAS ðñ FPAUS
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Markov Chain Monte Carlo Algorithms
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Markov Chain Monte Carlo Algorithms

The Idea
Given a probability distribution π on a set S , we want to be able to
sample from this probability distribution.
In MCMC, we define a Markov chain that has π as a stationary
distribution. We run the chain for some iterations and then sample
from it.

Why?

Sometimes it is easier to construct the Markov chain than the
probability distribution π.
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Hardcore Model

Definition

Let G “ pV ,E q be a graph. The hardcore model of G randomly
assigns either 0 or 1 to each vertex such that no neighboring
vertices both have the value 1.

Assignment of the values 0 or 1 to the vertices are called
configurations. So a configuration is a map in t0, 1uV .

A configuration is called feasible if and only if no adjacent vertices
have the value 1.

In the hardcore model, the feasible configurations are chosen
uniformly at random.
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Hardcore Model

Question

For a given graph G , how can you directly choose a feasible
configuration uniformly at random?

An equivalent question is:

Question

For a given graph G , how can you directly choose independent sets
of G uniformly at random?
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Grid Graph Example

Observation

In an n ˆ n grid graph, there are 2n
2

configurations.

Observation

There are at least 2n
2{2 feasible configurations in the grid graph.

Indeed, set every other node in the grid graph to 0. For example, if we label the
vertices by tpx , yq | 0 ď x ă n, 0 ď y ă nu. Then set all vertices with x ` y ” 0
pmod 2q to 0. The value of the remaining n2{2 vertices can be chosen arbitrarily,
giving at least 2n2{2 feasible configurations.

Direct sampling from the feasible configurations seems difficult.
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Hardcore Model Markov Chain

Given a graph G “ pV ,E q with a set F of feasible configurations.
We can define a Markov chain with state space F and the following
transitions

1 Let Xn be the current feasible configuration. Pick a vertex
v P V uniformly at random.

2 For all vertices w P V ztvu, the value of the configuration
will not change: Xn`1pwq “ Xnpwq.

3 Toss a fair coin. If the coin shows heads and all neighbors of
v have the value 0, then Xn`1pvq “ 1; otherwise
Xn`1pvq “ 0.
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Hardcore Model

Proposition

The hardcore model Markov chain is irreducible.

Proof.
Given an arbitrary feasible configuration with m ones, it is possible
to reach the configuration with all zeros in m steps.
Similarly, it is possible to go from the zero configuration to an
arbitrary feasible configuration with positive probability in a finite
number of steps.
Therefore, it is possible to go from an arbitrary feasible
configuration to another in a finite number of steps with positive
probability.
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Hardcore Model

Proposition

The hardcore model Markov chain is aperiodic.

Proof.
For each state, there is a small but nonzero probability that the
Markov chain stays in the same state. Thus, each state is
aperiodic. Therefore, the Markov chain is aperiodic.
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Hardcore Model

Proposition

Let π denote the uniform distribution on the set of feasible
configurations F . Let P denote the transition matrix. Then

πfPf ,g “ πgPg ,f

for all feasible configurations f and g .
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Proof.

Since πf “ πg “ 1{|F |, it suffices to show that Pf ,g “ Pg ,f .

1 This is trivial if f “ g .

2 If f and g differ in more than one vertex, then
Pf ,g “ 0 “ Pg ,f .

3 If f and g differ only on the vertex v . If G has k vertices,
then

Pf ,g “
1

2
¨

1

k
“ Pg ,f .
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Hardcore Model

Corollary

The stationary distribution of the hardcore model Markov chain is
the uniform distribution on the set of feasible configurations.
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Uniform Distributions
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Markov Chain Monte Carlo

Problem
If we define a Markov chain or a random walk, then the stationary
distribution might not be uniform.

How can we obtain a Markov chain that has a stationary
distribution that is uniform?

Idea
We are going to modify the transition probabilities and introduce
self-loops so that the resulting stationary distribution is uniform.

42 / 45



Neighborhood

Definition
Let x be an element x of the state space S of a Markov chain with
transition matrix P . We define the neighborhood Npxq of the
state x as

Npxq “ ty | y P S ,Px ,y ą 0u.

In the graphical representation, Npxq are all vertices that can be
reached from x .
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Modifying the Markov Chain

Proposition
Suppose that we are given a random walk on a connected undirected graph with
vertex set S . Let N denote the maximum number of neighbors of any state, so
N “ maxxPS |Npxq|. Let M be an integer such that M ě N . Consider the
Markov chain with state space S and transition matrix

Px ,y “

$

’

&

’

%

1{M if x ‰ y and y P Npxq,

0 if x ‰ y and y R Npxq,

1´ |Npxq|{M if x “ y .

The resulting Markov chain is irreducible and aperiodic. The stationary
distribution of this chain is the uniform distribution on S .
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Proof.

Let π denote the uniform distribution on S , that is,

πx “ 1{|S |

for all x P S .
If x and y are distinct adjacent elements of S , then

πxPx ,y “
1

|S |
¨

1

M
“ πyPy ,x .

If x and y are distinct non-adjacent elements of S , then

πxPx ,y “
1

|S |
¨ 0 “ πyPy ,x .

Therefore, π is a reversible distribution for the Markov chain. The Markov chain
is irreducible and aperiodic, so π is the stationary distribution.
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