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Multigraphs

Let G “ pV ,E q be a connected, undirected, loopfree multigraph
with n vertices. A multigraph may contain multiple edges between

two vertices, as the following example shows.
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Cuts in Multigraphs

Definition

A cut in the multigraph G “ pV ,E q is a partition of the vertex set
V into two disjoint nonempty sets V “ V1 Y V2. An edge with one

end in V1 and the other in V2 is said to cross the cut.

Remark

The term cut is chosen because the removal of the edges in a cut

partitions the multigraph.
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Example of a Cut
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Example

If we partition V “ tA,B ,C ,D,E , Fu into the sets

V1 “ tA,Cu and V2 “ tB ,D,E , Fu,

then this cut has five crossing edges, and removing these edges

yields a disconnected multigraph.
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Size of a Cut
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Definition

The size of the cut is given by the number of edges crossing the
cut. The above example shows a cut of size 5.
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Goal

Determine the minimum size of a cut in a given multigraph G .
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Edge Contraction

We describe a very simple randomized algorithm for this purpose. If

e is an edge of a loopfree multigraph G , then the multigraph G{e is
obtained from G by contracting the edge e “ tx , yu, that is, we
identify the vertices x and y and remove all resulting loops.
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Key Observation

Remark

Note that any cut of G{e induces a cut of G.
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Example

The cut tA,Bu Y tD,E , Fu in G{tC ,Du induces the cut

tA,Bu Y tC ,D,E , Fu in G . In general, the vertices that have been
identified in G{e are in the same partition of G .
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Observation

Remark

The size of the minimum cut of G{e is at least the size of the

minimum cut of G, because all edges are kept.
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Idea

We can use successive contractions to estimate the size of
the minimum cut of G .

We can select uniformly at random one of the remaining
edges and contract it until two vertices remain.

The cut determined by this algorithm contains precisely the

edges that have not been contracted.

Counting the edges between the remaining two vertices

yields an estimate of the size of the minimum cut of G .
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Example (1/4)
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Step 1

Contract by tE , Fu. Partition ttAu, tBu, tCu, tDu, tE , Fuu.
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Example (2/4)
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Step 2

Contract by tD, Fu. Partition ttAu, tBu, tCu, tD,E , Fuu.
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Example (3/4)
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Step 3

Contract by tC ,Du. Partition ttAu, tBu, tC ,D,E , Fuu.
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Example (4/4)

A B

D A B

Step 4

Contract by tB ,Du. Partition ttAu, tB ,C ,D,E , Fuu.
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Karger’s Minimum Cut Algorithm

Contract(G )

Require: A connected loopfree multigraph G “ pV ,E q with at
least 2 vertices.

1: while |V | ą 2 do

2: Select e P E uniformly at random;

3: G := G/e;
4: end while

5: return |E |.
Ensure: An upper bound on the minimum cut of G .
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Main Tool

Conditional Probability

PrrE X F s “ PrrE |F sPrrF s
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Consequence

Exercise

Prove the following straightforward consequence of the previous

formula

Pr

«

n
č

ℓ“1

Eℓ

ff

“
˜

n
ź

m“2

Pr
”

Em

ˇ

ˇ

ˇ

m´1
č

ℓ“1

Eℓ

ı

¸

PrrE1s.

If you expand the formula then you will immediately see the pattern.
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Solution

Idea:

PrrEn X En´1 X ¨ ¨ ¨ X E1s “ PrrEn | En´1 X ¨ ¨ ¨ X E1sPrrEn´1 X ¨ ¨ ¨ X E1s
PrrEn´1 X En´2 X ¨ ¨ ¨ X E1s “ PrrEn´1 | En´2 X ¨ ¨ ¨ X E1sPrrEn´2 X ¨ ¨ ¨ X E1s
PrrEn´2 X En´3 X ¨ ¨ ¨ X E1s “ PrrEn´2 | En´3 X ¨ ¨ ¨ X E1sPrrEn´1 X ¨ ¨ ¨ X E1s

...

PrrE2 X E1s “ PrrE2 | E1sPrrE1s

Rigorous proof: Induction.
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Caution

Suppose that the multigraph has a uniquely determined minimum

cut. If the algorithm selects in this case any edge crossing this cut,
then the algorithm will fail to produce the correct result. The

analysis is largely guided by this observation.

Exercise

Give an example of a connected, loopfree multigraph with at least

four vertices that has a uniquely determined minimum cut.
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Number of Iterations

Remark

Let G “ pV ,E q be a loopfree connected multigraph with n “ |V |
vertices. Note that each contraction reduces the number of vertices

by one, so the algorithm terminates after n ´ 2 steps.
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Analysis (1/4)

Suppose that C is a particular minimum cut of G . Let Ei denote the event that
the algorithm selects in the ith step an edge that does not cross the cut C .
Therefore, the probability that no edge crossing the cut C is ever picked during
an execution of the algorithm is

Pr

«

n´2
č

j“1

Ej

ff

.

This probability can be calculated by

Pr

«

n´2
č

m“1

Em

ff

“
˜

n´2
ź

m“2

Pr
”

Em

ˇ

ˇ

ˇ

m´1
č

ℓ“1

Eℓ

ı

¸

PrrE1s.
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Analysis (2/4)

Suppose that the size of the minimum cut is k .

This means that the degree of each vertex is at least k , hence there
exist at least kn{2 edges.

The probability to select an edge crossing the cut C in the first step
is at most k{pkn{2q “ 2{n. Consequently,

PrrE1s ě 1 ´ 2

n
“ n ´ 2

n
.
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Analysis (3/4)

Similarly, at the beginning of the mth step, with m ě 2, there are
n ´ m ` 1 remaining vertices.

The minimum cut is still at least k , hence the multigraph has at
this stage at least kpn ´ m ` 1q{2 edges. Assuming that none of
the edges crossing C was selected in an earlier step, the probability

to select an edge crossing the cut C is 2{pn ´ m ` 1q.
It follows that

Pr
“

Em|
m´1
č

j“1

Ej

‰

ě 1 ´ 2

n ´ m ` 1
“ n ´ m ´ 1

n ´ m ` 1
.
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Analysis (4/4)

Applying these lower bounds to the iterated conditional probabilities

yields the result:

Pr
“

n´2
č

j“1

Ej

‰

ě
n´2
ź

m“1

ˆ

n ´ m ´ 1

n ´ m ` 1

˙

In other words, we have

Pr
“

n´2
č

j“1

Ej

‰

ě
ˆ

n ´ 2

n

˙ ˆ

n ´ 3

n ´ 1

˙ ˆ

n ´ 4

n ´ 2

˙

¨ ¨ ¨
ˆ

3

5

˙ ˆ

2

4

˙ ˆ

1

3

˙

“ 2

npn ´ 1q “
ˆ

n

2

˙´1
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In conclusion, we have shown that the contraction algorithm yields

the correct answer with probability at least Ωp1{n2q.
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Number of Repetitions
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Main Tool

Useful Inequality

1 ` x ď ex .

Indeed, consider the function f pxq “ ex ´ 1 ´ x .

It has the derivative f 1pxq “ ex ´ 1.

We have f 1pxq “ 0 if and only if x “ 0.

The function f pxq has a (global) minimum at x “ 0, since
f 2p0q “ e0 “ 1 ą 0. We can conclude that f pxq ě f p0q “ 0.
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Consequence

Corollary

Consequently, for all positive integers n, we have
´

1 ` x

n

¯n

ď pex{nqn “ ex .
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Analysis

The probability that the algorithm fails to produce the correct

result in one execution is

Prrfailures ď p1 ´ 2{n2q.

Recall that for independent event E and F , the probability is given
by PrrE X F s “ PrrE sPrrF s. Therefore, if we execute the algorithm
n2{2 times, then the probability that the repeated executions will
never reveal the correct size of the minimum cut is at most

ˆ

1 ´ 2

n2

˙n2{2
ď e´1

.
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Analysis

If we repeat the algorithm n2 ln n
2

times, then the probability of

obtaining an incorrect size of the minimum cut is at most

ˆ

1 ´ 2

n2

˙ n2 ln n
2

ď e´ ln n “ 1

n
.

We can conclude that repeating the contraction algorithm
Opn2 log nq times yields the correct size of the minimum cut with

high probability.
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FastCut
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Motivation

Assuming that the input multigraph has just a single

minimum cut C , then Karger’s minimum cut algorithm fails
in a single run if and only if it contracts an edge of the

minimum cut C .

Selecting an edge crossing the cut C is more likely towards a
later stage of the algorithm rather than at the beginning.
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Idea

We can subdivide the node contractions into different phases

Early phases need fewer repetitions (restarts), since they are
less likely to err

Later phases need more repetitions (restarts), since this is
where the errors are likely to happen

We use recursion.

33 / 42



Modified Minimum Cut Algorithm

Contract(G , t)

Require: A connected loopfree multigraph G “ pV ,E q with at

least t vertices.
1: while |V | ą t do

2: Select e P E uniformly at random;

3: G := G/e;
4: end while

Idea

Stop when t nodes are reached.
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Probability of Survival of the Minimum Cut

As in the case t “ 2, we have

Pr
“

n´t
č

j“1

Ej

‰

ě
n´t
ź

j“1

ˆ

n ´ m ´ 1

n ´ m ` 1

˙

We get the lower bound

Pr
“

n´t
č

j“1

Ej

‰

ě
ˆ

n ´ 2

n

˙ ˆ

n ´ 3

n ´ 1

˙

¨ ¨ ¨
ˆ

t

t ` 2

˙ ˆ

t ´ 1

t ` 1

˙

“
`

t
2

˘

`

n
2

˘
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Proposition

If t ě n?
2

` 1, then
`

t
2

˘

{
`

n
2

˘

ě 1{2.

The function
ˆ

t

2

˙

{
ˆ

n

2

˙

“ tpt ´ 1q
npn ´ 1q

is increasing in t. Substituting t “ n?
2

` 1 yields

tpt ´ 1q
npn ´ 1q “

p n?
2

` 1q n?
2

npn ´ 1q ě
n2

2
´ n

2

npn ´ 1q “ 1

2
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Modified Minimum Cut Algorithm by Karger and Stein

FastCut(G )

Require: A connected loopfree multigraph G “ pV ,E q.
1: n “ |V |.
2: return mincut(G ) if n ď 6 // brute force computation
3: t “ rn{

?
2 ` 1s.

4: G1 “ ContractpG , tq.
5: G2 “ ContractpG , tq.
6: return minp FastCut(G1), FastCut(G2));
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Complexity

Proposition

FastCut runs in Opn2 log nq time.

Proof.

The algorithm Contract uses Opn2q time to reduce a multigraph
with n vertices down to 2 vertices. Thus, reducing it twice to t

vertices can certainly be done in Opn2q time. The time T pnq of
FastCut satisfies the recurrence

T pnq “ 2T

ˆR

1 ` n?
2

V˙

` Opn2q.

The solution to this recurrence satisfies T pnq “ Opn2 log nq.
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Success Probability

Proposition

FastCut finds a minimum cut with probability Ωp1{ log nq.

Proof.
We already showed that minimum cut C survives the contractions

from n to n{
?
2 ` 1 vertices with probability 1{2 or more.

Let Ppnq denote the probability that FastCut succeeds in finding a
minimum cut in a multigraph with n vertices. Then

Ppnq ě 1 ´
ˆ

1 ´ 1

2
P

ˆR

1 ` n?
2

V˙˙2

.
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Success Probability

Proof (Continued).

We will solve this recurrence by making a change of variables.

The depth of the recursion is k “ Oplog nq. Let ppkq denote a
lower bound on the success probability at level k . Then

pp0q “ 1

and (from the previous inequality)

ppk ` 1q “ ppkq ´ ppkq2
4

.
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Success Probability

Proof (Continued).

We can solve this by setting qpkq “ 4{ppkq ´ 1, which amounts to

ppkq “ 4{pqpkq ` 1q.

Substituting into the previous equation yields

qpk ` 1q “ qpkq ` 1 ` 1

qpkq .

By induction, we have
k ă qpkq ă k ` Hk´1 ` 4,

where Hk´1 “ 1 ` 1{2 ` ¨ ¨ ¨ ` 1{pk ´ 1q. It follows that

qpkq “ k ` Θplog kq.
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Success Probability

Proof (Continued).

Since qpkq “ k ` Θplog kq and by definition

ppkq “ 4

qpkq ` 1
“ 4

k ` Θplog kq ` 1
.

We have

lim
kÑ8

ppkq{p1{kq “ lim
kÑ8

4k

k ` Θplog kq ` 1
“ 4.

It follows that ppkq “ Θp1{kq. Since ppkq was the lower bound to
Ppnq with recursion depth k “ Θplog nq, we can conclude that

Ppnq ě pplog nq “ Ωp1{ log nq. ✷
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