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Probability Generating Functions

Definition
Let X be a discrete random variable defined on a probability space
with probability measure Pr. Assume that X has non-negative
integer values. The probability generating function of X is
defined by

GX pzq “ ErzX s “
8
ÿ

k“0

PrrX “ kszk .

This series converges for all z with |z | ď 1.
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Expected Value

Expectation

The expectation value can be expressed by

ErX s “
8
ÿ

k“1

k PrrX “ ks “ G 1X p1q, (1)

where G 1X pzq denotes the derivative of GX pzq.

Indeed, G 1X pzq “
8
ÿ

k“0

k PrrX “ kszk´1 “
8
ÿ

k“1

k PrrX “ kszk´1.
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Second Moment

Second Moment

ErX 2
s “ G 2X p1q ` G 1X p1q

Indeed,

G 1X pzq “
8
ÿ

k“1

k PrrX “ kszk´1

and

G 2X pzq “
8
ÿ

k“2

kpk ´ 1qPrrX “ kszk´2 “
8
ÿ

k“2

pk2´ kqPrrX “ kszk´1.
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Variance

Variance

VarrX s “ E rX 2
s ´ E rX s2

“ G 2X p1q ` G 1X p1q ´ G 1X p1q
2.
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Bernoulli Variables

Example

Let X be a random variable that has Bernoulli distribution with
parameter p. The probability generating function is given by

GX pzq “ p1´ pq ` pz .

Hence G 1X pzq “ p, and G 2pzq “ 0. We obtain ErX s “ G 1X p1q “ p
and

VarrX s “ G 2X p1q ` G 1X p1q ´ G 1X p1q
2
“ 0` p ´ p2 “ pp1´ pq.
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Geometric Random Variables
Example

The probability generating function of a geometrically distributed random
variable X is

G pzq “
8
ÿ

k“1

pp1´ pqk´1zk “ pz
8
ÿ

k“0

p1´ pqkzk “
pz

1´ p1´ pqz
.

Some calculus shows that

G 1pzq “
p

p1´ p1´ pqzq2
, G 2pzq “

2pp1´ pq

p1´ p1´ pqzq3
.

Therefore, the expectation value is ErX s “ G 1X p1q “ 1{p. The variance is given
by

VarrX s “ G 2p1q ` G 1p1q ´ G 1p1q2 “
2p1´ pq

p2
`

1

p
´

1

p2
“

1´ p

p2
.
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Sums of Independent Random Variables

Proposition

Let X1, . . . ,Xn be independent Z ě-valued random variables with
probability generating functions GX1

pzq, . . . ,GXn
pzq. The probability

generating function of X “ X1 ` ¨ ¨ ¨ ` Xn is given by the product

GX pzq “
n
ź

k“1

GXk
pzq.
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Proof.
It suffices to show this for two random variables X and Y . The general case can
be established by a straightforward induction proof.

GX pzqGY pzq “

˜

8
ÿ

k“0

PrrX “ kszk

¸˜

8
ÿ

k“0

PrrY “ kszk

¸

“

8
ÿ

k“0

zk

˜

k
ÿ

`“0

PrrX “ `sPrrY “ k ´ `s

¸

“

8
ÿ

k“0

zk

˜

k
ÿ

`“0

PrrX “ `,Y “ k ´ `s

¸

“

8
ÿ

k“0

k
ÿ

`“0

PrrX ` Y “ kszk “ GX`Y pzq
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Binomial Distribution

Example

Recall that the Bernoulli distribution with parameter p has
generating function p1´ pq ` pz . If X1, . . . ,Xn are independent
random variables that are Bernoulli distributed with parameter p,
then X “ X1 ` ¨ ¨ ¨ ` Xn is, by definition, binomially distributed with
parameters n and p. The generating function of X is

GX pzq “ pp1´ pq ` pzqn “
n
ÿ

k“0

ˆ

n

k

˙

p1´ pqn´kpkzk .
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Binomial Distribution

Example (Continued.)

We have
G 1X pzq “ nppp1´ pq ` pzqn´1

The expected value is given by

ErX s “ G 1X p1q “ np.
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Binomial Distribution

Example (Continued.)

We have
G 1X pzq “ nppp1´ pq ` pzqn´1

and
G 2X pzq “ npn ´ 1qp2pp1´ pq ` pzqn´2.

The expected value is given by

VarrX s “ G 2X p1q ` G 1X p1q ´ G 1X p1q
2

“ pn2 ´ nqp2 ` np ´ n2p2

“ ´np2 ` np “ npp1´ pq
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Uniqueness Theorem

Proposition

Let X and Y be discrete random variables with probability
generating functions GX pzq and GY pzq, respectively. Then the
probability generating function

GX pzq “ GY pzq

if and only if the probability distributions

PrrX “ ks “ PrrY “ ks

for all integers k ě 0.
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Proof.

If the probability distributions are the same, then evidently GX pzq “ GY pzq.

Conversely, suppose that the generating functions GX pzq and GY pzq are the
same. Since the radius of convergence is at least 1, we can expand the two
generating funcions into power series

GX pzq “
8
ÿ

k“0

PrrX “ kszk

GY pzq “
8
ÿ

k“0

PrrY “ kszk

These two power series must have identical coefficients, since the generating
functions are the same. Therefore, PrrX “ ks “ PrrY “ ks for all k ě 0, as
claimed.
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Number of Inversions
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Inversion of a Permutation

Definition

Let pa1, a2, . . . , anq be a permutation of the set t1, 2, . . . , nu. The
pair pai , ajq is called an inversion if and only if i ă j and ai ą aj .

Example

The permutation p3, 4, 1, 2q has the inversions

tp3, 1q, p3, 2q, p4, 1q, p4, 2qu.
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Number of Inversions

Definition

Let Inpkq denote the number of permutations on n points with k
inversions.

Example

We have Inp0q “ 1, since only the identity has no inversions.

Example

We have Inp1q “ n ´ 1. Indeed, a permutation π can have a single
inversion if and only if π is equal to a transposition of neighboring
elements pk ` 1, kq for some k in the range 1 ď k ď n ´ 1.
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Number of Inversions

Example

Since no permutation can have more than
`

n
2

˘

inversions, we have

Inpkq “ 0 for all k ą

ˆ

n

2

˙

.

Example

By reversal of the permutations, we have the symmetry

In

ˆˆ

n

2

˙

´ k

˙

“ Inpkq
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Probability Generating Function

Suppose that we choose permutations π uniformly at random from
the symmetric group Sn.

Let Xn denote the random variable on Sn that assigns a permutation
π its number of inversions. Then the probability generating function

GXn
pzq “

pn2q
ÿ

k“0

PrrXn “ kszk

is given by

GXn
pzq “

pn2q
ÿ

k

Inpkq

n!
zk .
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Probability Generating Function

Question

Can we relate the generating functions GXn
pzq and GXn´1

pzq?

Observation

Suppose that we have a permutation πn´1 on t1, 2, . . . , n ´ 1u. If
we insert the element n at position j with 1 ď j ď n, then we get
an additional n ´ j inversions.

Example

1 2 8 3 4 5 6 7
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Probability Generating Function

Example

1 2 3 4 5 6 7 8 additional inversions: 0

1 2 3 4 5 6 8 7 additional inversions: 1

...

8 1 2 3 4 5 6 7 additional inversions: 7

Observation
We need to insert n uniformly at random to obtain a uniformly
distributed permutation on n elements from uniformly distributed
permutations on n ´ 1 elements.
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Probability Generating Function

Proposition

GXn
pzq “

$

’

&

’

%

p1` z ` z2 ` ¨ ¨ ¨ ` zn´1q

n
GXn´1

pzq if n ą 1,

1 if n “ 1.
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Probability Generating Function

Corollary

GXn
pzq “

1

n!

n
ź

k“1

p1` z ` z2 ` ¨ ¨ ¨ ` zn´1q

“

n
ź

k“1

1´ zk

kp1´ zq
“

1

n!

n
ź

k“1

1´ zk

1´ z

23 / 27



Factorization: Expected Value

In other words, the generating function GXnpzq is the product of generating
functions of discrete uniform random variables Uk on t0, 1, . . . , k ´ 1u,

GXnpzq “
n
ź

k“1

GUk
pzq, where GUk

pzq “
1` z ` ¨ ¨ ¨ ` zk´1

k
.

By the product rule for n functions, we have

G 1Un
pzq “

n
ź

k“1

GUk
pzq

n
ÿ

`“1

1
n
p1` 2z ` 3z2 ` ¨ ¨ ¨ ` ¨ ¨ ¨ ` p`´ 1qz `´2q

GU`
pzq

.

Then

ErXns “ G 1Un
p1q “

n
ÿ

k“1

k ´ 1

2
“

npn ´ 1q

4
.
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Expected Value (Alternative Way)

Example (Creating a Permutation by Inserting One Element at a Time)

1

2 1

2 1 3

...
. . .

8 2 1 3 5 7 6 8

Observation

Xn “ U1 ` U2 ` ¨ ¨ ¨ ` Un

ErXns “ ErU1s ` ErU2s ` ¨ ¨ ¨ ` ErUns
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Expected Value

Proposition

ErXns “

n
ÿ

k“1

ErUks “

n
ÿ

k“1

k ´ 1

2
“

npn ´ 1q

4
.
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Variance

Proposition

VarrXns “
2n3 ` 3n2 ´ 5n

72
.

Proof.

Since Xn “ U1 ` U2 ` ¨ ¨ ¨ ` Un and the Uk are mutually independent, we get

VarrXns “

n
ÿ

k“1

VarrUns “

n
ÿ

k“1

k2 ´ 1

12
“

1

12

˜

n
ÿ

k“1

k2
´ n

¸

“
1

12

ˆ

2n3 ` 3n2 ` n

6
´ n

˙

“
2n3 ` 3n2 ´ 5n

72
.
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