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Expectation Value

Definition
Let X be a discrete random variable over the probability space
pΩ,F ,Prq. The expectation value of X is defined to be

ErX s “
ÿ

αPX pΩq

αPrrX “ αs,

when this sum is unconditionally convergent in R, the extended real
numbers.

The expectation value is also called the mean of X .
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Simplest Example

Example

Let pΩ,F ,Prq denote a probability space. Let IA denote the
indicator random variable of the event A P F . Then

ErIAs “ 0 PrrIA “ 0s ` 1 PrrIA “ 1s “ PrrAs.
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Example

Exercise
Suppose you have a weighted coin

Prrheadss “
3

4
and Prrtailss “

1

4
.

If you flip heads, you win $2, but if you flip tails, you lose $1. What
is the expected value of a coin flip?
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Solution

Solution

Let X denote the random variable that gives the win/loss for each
coin toss. Then

ErX s “ PrrX “ 2s ¨ 2` PrrX “ ´1sp´1q

“
3

4
2´

1

4
1

“ $1.25
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Expectation Value of Nonnegative Integral Random Variables

Proposition

If X is a random variable with nonnegative integer values, then the
expectation can be calculated by

ErX s “
8
ÿ

x“1

PrrX ě xs,

which is often convenient.
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Proof.
Writing PrrX ě xs “

ř8

k“x PrrX “ ks, we can express the expectation in the
form

8
ÿ

x“1

PrrX ě xs “ PrrX “ 1s `PrrX “ 2s `PrrX “ 3s ` ¨ ¨ ¨

`PrrX “ 2s `PrrX “ 3s ` ¨ ¨ ¨

`PrrX “ 3s ` ¨ ¨ ¨
...

. . .

“ 1 PrrX “ 1s `2 PrrX “ 2s `3 PrrX “ 3s
“ ErX s.

The equalities are justified, since ErX s “
ř8

x“1 x PrrX “ xs is unconditionally convergent.
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Linearity of Expectation
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Linearity of Expectation

Proposition

If X and Y are two arbitrary discrete random variables, then

EraX ` bY s “ aErX s ` bErY s,

that is, the expectation operator is linear. This is an extremely
useful result.

This follows directly from the definition.
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Example: Hat Check Girl

Problem
Suppose that n persons give their hats to the hat check girl. She is
upset because her goat has just passed away, and is handing the
hats back at random. We want to answer the following question:
On average, how many persons get their own hat back?
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Example: Hat Check Girl

Example

The sample space is Ω “ t1, . . . , nu. The σ-algebra is F “ 2Ω.

An event S P F “ 2Ω means that each person k P S received her
own hat. For example, t1, 3, 7u means that the first, third, and
seventh person received their own hat back.
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Example: Hat Check Girl

Example

We want to count how many persons receive their own hat back. It
is convenient to introduce the indicator random variable Xk of
the event tku that the k-th person received her own hat back.

Then Xk : Ω Ñ t0, 1u is the function given by

Xkpnq “

#

1 if n “ k ,

0 if n ‰ k .
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Example: Hat Check Girl

Example

Since the hat check girl hands out the hats uniformly at random,
we have

Prrk-th person receives her own hat backs “
1

n
.

Thus,

PrrXk “ 1s “
1

n
.
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Example: Hat Check Girl

Example

Let X “ X1 ` ¨ ¨ ¨ ` Xn denote the number of persons receiving
their own hats. By linearity of expectation, we get

ErX s “
n
ÿ

k“1

ErXks “

n
ÿ

k“1

1 ¨ PrrXk “ 1s “ np1{nq “ 1.

Thus, on average one person receives her own hat back.
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Covariance and Products
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Covariance

Definition
The covariance of two random variables is defined as

CovrX ,Y s “ ErpX ´ ErX sqpY ´ ErY sqs

when this expression makes sense.
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Covariance

Proposition

CovrX ,Y s “ ErXY s ´ ErX sErY s.

Proof.

CovrX ,Y s “ ErpX ´ ErX sqpY ´ ErY sqs

“ ErXY ´ XErY s ´ ErX sY ` ErX sErY ss

“ ErXY s ´ ErX sErY s.
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The Expected Value of Products

Proposition

If X and Y are random variables, then

ErXY s “ CovrX ,Y s ` ErX sErY s.

Proof.
This follows from the previous proposition.
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Expected Value of Products

Proposition

If X and Y are independent discrete random variables, then

ErXY s “ ErX sErY s.

Caveat: If X and Y are not independent, then this is in general
false.
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Proof
We prove it form simple random variables X and Y . We can write
X and Y in the form

X “
m
ÿ

i“1

ai IAi
and Y “

n
ÿ

j“1

bj IBj
,

where

1 Ai denotes the event X “ ai ,

2 Bj denotes the event Y “ bj .

Since the random variables are independent, we have

ErIAi
sErIBj

s “ PrrAi sPrrBjs “ PrrAi X Bjs “ ErIAiXBj
s “ ErIAi

IBj
s.
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Proof (Continued)

It follows that

ErX sErY s “ E

«

m
ÿ

i“1

ai IAi

ff

E

«

n
ÿ

j“1

bj IBj

ff

“

˜

m
ÿ

i“1

aiErIAi
s

¸˜

n
ÿ

j“1

bjErIBj
s

¸

“

m
ÿ

i“1

n
ÿ

j“1

aibjE rIAi
IBj
s
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Proof (Continued)

It follows that

ErX sErY s “
m
ÿ

i“1

n
ÿ

j“1

aibjE rIAi
IBj
s

“ E

«˜

m
ÿ

i“1

ai IAi

¸˜

n
ÿ

j“1

bj IBj

¸ff

“ ErXY s

22 / 41



Consequence

Corollary

If X and Y are independent random variables, then

CovrX ,Y s “ 0.

23 / 41



Tail Inequalities
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Markov’s Inequality

The expectation can be used to bound probabilities, as the
following simple, but fundamental, result shows:

Theorem (Markov’s Inequality)

If X is a nonnegative random variable and t a positive real number,
then

PrrX ě ts ď
ErX s

t
.
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Markov’s Inequality

Proof.
Let Y denote the indicator random variable of the event X ě t, so

Y pωq “

"

1 if X pωq ě t,
0 if X pωq ă t.

The expectation value of X satisfies

ErX s ě ErtY s “ t ErY s “ t PrrX ě ts,

which proves the claim.

26 / 41



Markov’s Inequality: What goes wrong if X is not nonnegative?

Counterexample

Suppose that X is a random variable with values in t´2, 2u such
that

PrrX “ ´2s “
1

2
, PrrX “ 2s “

1

2
.

Thus, X is not a nonnegative random variable. Then

PrrX ě 1s “
1

2
ň

ErX s

1
“ 0.

So Markov’s inequality does not hold here!
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Exercise
Let X be a discrete random variable and let h : RÑ R be a
nonnegative function. Show that for all positive real numbers t, we
have

PrrhpX q ě ts ď
E rhpX qs

t
.
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Solution

If X is a discrete random variable, then hpX q is a nonnegative
discrete random variable. Define Y by

Y pωq “

"

0 if hpX qpωq ă t,
1 if hpX qpωq ě t,

hence Y “ 1 denotes the event hpX q ě t, and Y “ 0 the event
hpX q ă t. Thus, Y is an indicator random variable. We have

ErhpX qs ě ErtY s “ tErY s “ t PrrhpX q ě ts,

and the claim follows.
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Variance
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Variance

Definition

The variance VarrX s of a discrete random variable X is defined by

VarrX s “ ErpX ´ ErX sq2s “ ErX 2
s ´ ErX s2,

whenever this expression is well-defined. The variance measures the
squared deviation from the expected value ErX s.
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Caveats

Nonlinear!
The variance is not a linear operator, since

VarrX ` X s “ 4VarrX s

holds, to mention just one example.

In general

VarraX ` bs “ a2VarrX s for all a, b P R.
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Independent Random Variables

Proposition

If X and Y are independent random variables, then the variance
satisfies

VarrX ` Y s “ VarrX s ` VarrY s. (1)
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Chebychev’s Inequality

The random variable X will rarely deviate from the expectation
value if the variance is small. This is a consequence of the
Chebychev’s useful inequality:

Theorem (Chebychev’s inequality)

If X is a random variable, then

PrrpX ´ E rX sq2 ě βs ď
VarrX s

β
. (2)
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Proof.
Given the random variable X , we can define the new random
variables Y “ X ´ ErX s and Y 2. Since Y 2 is a nonnegative
random variable, Markov’s inequality shows that

PrrY 2
ě βs ď

ErY 2s

β
.

Since ErY 2s “ ErpX ´ ErX sq2s “ VarpX q, we have

PrrpX ´ ErX sq2 ě βs “ PrrY 2
ě βs ď

ErY 2s

β
“

VarrX s

β
.
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Standard Deviation

The square root of the variance, σ “
a

VarrX s, is called the
standard deviation of the random variable X .

Exercise
Show that if X is a random variable with standard deviation σ, then

Prr |X ´ ErX s| ě cσs ď
1

c2

for any positive constant c P R. This formula is often also called
Chebychev’s inequality. Can you explain why?
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Solution
We have

Prr|X ´ ErX s| ě cσs “ PrrpX ´ ErX sq2 ě pcσq2s ď
VarrX s

pcσq2
“

1

c2
,

which proves the claim. The proof shows that this inequality is
really equivalent to Chebychev’s inequality.
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Optimality of Chebychev’s Inequality

In general, we cannot improve upon Chebychev’s inequality.

Example
Let c be a real constant, c ě 1. Let X be a random variable with the probability
distribution

PrrX “ ´cs “
1

2c2
, PrrX “ 0s “ 1´

1

c2
, PrrX “ cs “

1

2c2
.

Then the expected value is given by

ErX s “ PrrX “ ´csp´cq ` PrrX “ 0s ¨ 0` PrrX “ cspcq “ 0.
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Optimality of Chebychev’s Inequality

Example (Continued)

Recall that

PrrX “ ´cs “
1

2c2
, PrrX “ 0s “ 1´

1

c2
, PrrX “ cs “

1

2c2
.

The variance of X is given by

VarrX s “ ErpX ´ ErX sq2s “ ErX 2
s

“ PrrX “ ´csc2
` PrrX “ 0s ¨ 0` PrrX “ csc2

“
1

2
` 0`

1

2
“ 1.
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Optimality of Chebychev’s Inequality

Example (Continued)

By definition of the random variable X , we have

Prr|X´ErX s| ě cσs “ Prr|X | ě cs “ PrrX “ ´cs`PrrX “ cs “
1

c2
.

Since the standard deviation σ “ 1, the bound given by
Chebychev’s inequality is tight, since

Prr|X ´ ErX s| ě cσs ď
1

c2
.
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Careful!!!

Chebychev’s inequality

If X is a random variable, then

PrrpX ´ E rX sq2 ě βs ď
VarrX s

β
. (3)

Chebychev’s inequality

If X is a random variable, then

Prr|X ´ E rX s| ě βs ď
VarrX s

β2
. (4)
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