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Shuffling Cards

Card Shuffling

Let us consider the following simple procedure to shuffle n cards.
Select a card uniformly at random at put it on the top of the deck.
Repeat this step.

Observations
This shuffling process is a Markov chain. Any of the n!
permutations can be reached from any permutation, so the chain is
irreducible. Since with probability 1{n the state remains the same,
each state is aperiodic, so the Markov chain is aperiodic. Hence the
chain has a unique stationary distribution.
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Shuffling Cards
Question

What is the stationary distribution of the shuffling Markov chain?

Answer
The uniform distribution is the stationary distribution on the Markov chain.
Indeed, the stationary distribution π satisfies πP “ π. More explicitly, if x is a
state of the chain and Npxq the set of states that can reach x in the next step,
then

n “ |Npxq|,

since the top card in x could have been in n different positions. Thus, we have

πx “
1

n

ÿ

yPNpxq

πy .

Since the uniform distribution satisfies these equations, it must coincide with π.
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Key Question

Question

We know that the stationary distribution is the limiting distribution
of the Markov chain. So eventually the states will be uniformly
distributed. But we would like to shuffle the cards just a finite
number of times.

How many times should we shuffle until the distribution is close to
uniform?
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Total Variation Distance

Definition

If p “ pp0, p1, . . . , pn´1q and q “ pq0, q1, . . . , qn´1q are probability
distributions on a finite state space, then

dTV pp, qq “
1

2

n´1
ÿ

k“0

|pk ´ qk |

is called the total variation distance between p and q.

In general, 0 ď dTV pp, qq ď 1. If p “ q, then dTV pp, qq “ 0.
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Total Variation Distance

Proposition

Let p1 and p2 be discrete probability distributions on a set S . For
any subset A of S , we define

pipAq “
ÿ

xPA

pipxq.

Then
dTV pp1, p2q “ max

APPpSq
|p1pAq ´ p2pAq|.
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Proof.

Let S˘ be the set of states such that

S` “ tx P S | p1pxq ě p2pxqu

S´ “ tx P S | p1pxq ă p2pxqu

Then

max
APPpSq

p1pAq ´ p2pAq “ p1pS
`
q ´ p2pS

`
q,

max
APPpSq

p2pAq ´ p1pAq “ p2pS
´
q ´ p1pS

´
q.
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Proof. (Continued)

Since p1pSq “ p2pSq “ 1, we have

p1pS
`
q ` p1pS

´
q “ p2pS

`
q ` p2pS

´
q,

hence
p1pS

`
q ´ p2pS

`
q “ p2pS

´
q ´ p1pS

´
q.

Therefore,

max
APPpSq

|p1pAq ´ p2pAq| “ |p1pS
`
q ´ p2pS

`
q| “ |p1pS

´
q ´ p2pS

´
q|.
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Proof. (Continued)

Since

|p1pS
`
q ´ p2pS

`
q| ` |p1pS

´
q ´ p2pS

´
q| “

ÿ

xPS

|p1pxq ´ p2pxq|

“ 2dTV pp1, p2q,

we can conclude that

max
APPpSq

|p1pAq ´ p2pAq| “ dTV pp1, p2q.
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Card Shuffling

Suppose that we run our shuffling Markov chain until the variation
distance between the distribution of the chain and the uniform
distribution is less than ε.

This is a strong notion of close to uniform, because every
permutation of the cards must have probability at most 1{n!` ε.

The bound on the variation distance gives an even stronger
statement: For any subset A of S , the probability that the final
permutation is from the set A is at most πpAq ` ε
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Card Shuffling

Example

Suppose someone is trying to make the top card in the deck an ace.
If the total variation distance from the distribution p1 to the
uniform distribution p2 is less than ε, then the probability that an
ace is the first card of the deck is at most ε greater than if we had
a perfect shuffle.
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Card Shuffling
Example

As another example, suppose we take a standard 52 card deck and
shuffle all the cards, but leave the ace of space on top. In this case,
the variation distance between the resulting distribution p1 and the
uniform distribution p2 could be bounded by considering the set B
of states where the ace of space is on the top of the deck.

dTV pp1, p2q “ max
APPpSq

|p1pAq ´ p2pAq| ě |p1pBq ´ p2pBq|

“ 1´
1

52
“

51

52
.

See how easy it is now to obtain a lower bound on the total variation distance?
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Markov Chains

Notation
Let π be the stationary distribution of a Markov chain with state
space S . Let ptx denote the distribution of the state of the chain
starting at state x after t steps. We define

∆xptq “ dTV pp
t
x , πq.

The maximum over all starting states is denoted by

∆ptq “ max
xPS

dTV pp
t
x , πq.
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Mixing Time of Markov Chains

Definition

The mixing time τxpεq of the Markov chain starting in state x is
given by

τxpεq “ mintt : ∆xptq ď εu.

The mixing time τpεq is given by

τpεq “ max
xPS

τxpεq.

A chain is called rapidly mixing if and only if τpεq is polynomial in
logp1{εq and the size of the problem.
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Coupling
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Motivation
Coupling of Markov chains is a general technique for bounding the
mixing time of a Markov chain.
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Coupling

Definition
A coupling of a Markov chain Mt with state space S is a Markov
chain Zt “ pXt ,Ytq on the state space S ˆ S such that

PrrXt`1 “ x 1 | Zt “ px , yqs “ PrrMt`1 “ x 1 | Mt “ xs,

PrrYt`1 “ y 1 | Zt “ px , yqs “ PrrMt`1 “ y 1 | Mt “ y s.

In other words, a coupling consists of two copies of the Markov chain M running
simultaneously. These two copies are not literal copies; the two chains are not necessarily in
same state, nor do they necessarily make the same move. Instead, we mean that each copy
behaves exactly like the original Markov chain in terms of its transition probabilities.
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Goal

We are interested in couplings that

1 bring the two copies of the chain to the same state and then

2 keep them in the same state by having the two chains
identical moves once they are in the same state.

When the two copies of the chain reach the same state, they are
said to have coupled.
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Coupling Lemma

Lemma

Let Zt “ pXt ,Ytq be a coupling for a Markov chain M on a state
space S . Suppose that there exists a T such that for every x , y in S

PrrXT ‰ YT | X0 “ x ,Y0 “ y s ď ε.

Then the mixing time after T steps is at most ε, so

τpεq ď T .

In other words, the total variation distance between the distribution
of the chain after T steps and the stationary distribution is at
most ε.
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Proof.
Let X0 be an arbitrarily chosen value and let Y0 be chosen according to the
stationary distribution. For the given T and ε and for any subset A of the set of
states S , we have

PrrXT P As ě PrrpXT “ YT q ^ pYT P Aqs

“ 1´ PrrpXT ‰ YT q _ pYT R Aqs

ě 1´ PrrXT ‰ YT s ´ PrrYT R As

ě PrrYT P As ´ ε

“ πpAq ´ ε.

The same argument for the set S ´ A shows that

PrrXT R As ě πpS ´ Aq ´ ε,

whence
PrrXT P As ď πpAq ` ε.
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Proof. (Continued)

It follows that
max
x ,A

|pTx pAq ´ πpAq| ď ε.

By the previous proposition, the total variation distance from the
stationary distribution is bounded by ε. So

τpεq ď T .
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Card Shuffling
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Card Shuffling

Let us analyze how quickly the card shuffling procedure converges
to a perfect shuffle.

Recall that in each step, we choose one card uniformly at random
and place it on top.

23 / 34



Card Shuffle Coupling

Definition
We will now define a coupling. Choose a position j uniformly at
random from 1 to n and then obtain Xt`1 from Xt by moving the
j-th card to the top. Denote the value of this card by C .

To obtain Yt`1 from Yt , move the card with value C to the top.

The coupling is valid, because in both chains the probability a
specific card is moved to the top at each step is 1{n.
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Card Shuffle Coupling

Observation
Once a card C is moved to the top, it is always in the same
position in both copies of the chain.

Hence, the two copies are sure to become coupled once every card
has been moved to the top at least once.
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Card Shuffle Coupling

We can bound the number of steps until the chains couple by
bounding how many times cards must be chosen uniformly at
random before every card is chosen at least once.
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Card Shuffling: Bounding the Number of Steps

If the Markov chain runs for at least n ln n ` cn steps, then the
probability that a specific card has not been moved to the top at
least once is at most

ˆ

1´
1

n

˙n ln n`cn

ď e´pln n`cq “
e´c

n
.

By the union bound, the probability that any card has not been
moved to the top at least once is at most e´c . Hence, after only

n ln n ` n lnp1{εq “ n lnpn{εq

steps, the probability that the chains have not coupled is at most ε.
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Card Shuffle: Conclusion

The coupling lemma allows us to conclude that the variation
distance between the uniform distribution and the distribution of
the state of the chain after n lnpn{εq steps is bounded above by ε.
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Random Walk on the Hypercube
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Hypercube

Definition
The hypercube has 2n vertices that are labeled by bit strings of
length n.

Two vertices u and v are connected by an edge if and only if their
labels differ in exactly one bit.
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Markov Chain on the Hypercube

Markov Chain
At each step, choose a coordinate i uniformly at random from
t0, . . . , n ´ 1u. The new state x 1 is obtained from the current state
x by keeping all coordinates of x the same, except possibly for xi .
The coordinate xi is set to 0 with probability 1{2 and to 1 with
probability 1{2.

Remark
This Markov chain is exactly the random walk on the hypercube,
except that with probability 1{2 the chain stays at the same vertex
instead of moving to a new one, so the chain is aperiodic.
Evidently, the chain is also irreducible.
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Hypercube: Stationary Distribution

Proposition

The stationary distribution of the Markov chain is the uniform
distribution.

Indeed, the uniform distribution is reversible for this chain. Since
this is an aperiodic irreducible finite Markov chain, the uniform
distribution is the unique stationary distribution.
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Hypercube: Coupling

Coupling

We bound the mixing time τpεq of this Markov chain by using the
obvious coupling between two copies Xt and Yt of the Markov
chain: at each step, we have both chains make the same move.

With this coupling, the two copies of the chain will surely agree on
the i -th coordinate, once the i -th coordinate has been chosen for a
move of the Markov chain. Hence the chains will have coupled after
all n coordinates have each been chosen at least once.
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Hypercube: Mixing Time

Mixing Time

The mixing time can therefore be bounded by bounding the number
of steps until each coordinate has been chosen at least once by the
Markov chain. As in the card shuffling, the probability is less than ε
that after n lnpn{εq steps the chains have not coupled. By the
coupling lemma, the mixing time satisfies

τpεq ď n lnpn{εq.

This is a rapidly mixing Markov chain.
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