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Conditional Expectation

We are going to define the conditional expectation of a random
variable given

1 an event,

2 another random variable,

3 a σ-algebra.

Conditional expectations can be convenient in some computations.
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Conditional Expectation given an Event

Definition
The conditional expectation of a discrete random variable X
given an event A is denoted as ErX | As and is defined by

ErX | As “
ÿ

x

x PrrX “ x | As.

It follows that

ErX | As “
ÿ

x

x PrrX “ x | As “
ÿ

x

x
PrrX “ x and As

PrrAs
.
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Example

Problem

Suppose that X and Y are discrete random variables with values in t1, 2u s.t.

PrrX “ 1,Y “ 1s “ 1
2
, PrrX “ 1,Y “ 2s “ 1

10
,

PrrX “ 2,Y “ 1s “ 1
10
, PrrX “ 2,Y “ 2s “ 3

10
.

Calculate ErX | Y “ 1s.

By definition

ErX | Y “ 1s “ 1 PrrX “ 1 | Y “ 1s ` 2 PrrX “ 2 | Y “ 1s.

“ 1
PrrX “ 1,Y “ 1s

PrrY “ 1s
` 2

PrrX “ 2,Y “ 1s

PrrY “ 1s
.
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6
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1

6
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7

6
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Conditional Expectation

Interpretation

Let F “ 2Ω with Ω finite. For a random variable X and an event A,
we can interpret ErX | As as the average of X pωq over all ω P A.

Indeed, we have

ErX |As “
ÿ

x

x PrrX “ x | As “
ÿ

x

x
Pr rX “ x and As

PrrAs

“
ÿ

ωPA

X pωq
Prrωs

PrrAs
.

Caveat

This interpretation does not work for all random variables, but it gives a better understanding
of the meaning of ErX | As.
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Conditional Expectation

Proposition
We have

ErX | As “
ErX IAs

PrrAs
.

Proof.

As we have seen,

ErX |As “
ÿ

x

x
Pr rX “ x and As

PrrAs
“

1

PrrAs

ÿ

x

xPr rX “ x and As.

We can rewrite the latter expression in the form

ErX |As “
ErX IAs

PrrAs
.
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Definition for General Random Variables

Definition

The conditional expectation ErX | As of an arbitrary random
variable X given an event A is defined by

ErX |As “

$

&

%

ErX IAs

PrrAs
if PrrAs ą 0,

0 otherwise.

8 / 63



Properties
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Linearity

Proposition

If a and b are real numbers and X and Y are random variables, then

EraX ` bY | As “ aErX | As ` bErY | As.

Proof.

EraX ` bY | As “
ErpaX ` bY q IAs

PrrAs

“ a
ErX IAs

PrrAs
` b

ErY IAs

PrrAs

“ aErX | As ` bErY | As.
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Independence

Proposition

If X and Y are independent discrete random variables, then

ErY | X “ xs “ ErY s.

Proof.
By definition,

ErY | X “ xs “
ÿ

y

y PrrY “ y | X “ xs

“
ÿ

y

y PrrY “ y s “ ErY s.
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Important Application
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Computing Expectations

We can compute the expected value of X as a sum of conditional
expectations. This is similar to the law of total probability.

Proposition

If X and Y are discrete random variables, then

ErX s “
ÿ

y

ErX | Y “ y sPrrY “ y s.
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Proposition

If X and Y are discrete random variables, then

ErX s “
ÿ

y

ErX | Y “ y sPrrY “ y s.

Proof.

ÿ

y

ErX | Y “ y sPrrY “ y s “
ÿ

y

´

ÿ

x

x PrrX “ x |Y “ y s
¯

PrrY “ y s

“
ÿ

x

ÿ

y

x PrrX “ x |Y “ y sPrrY “ y s

“
ÿ

x

ÿ

y

x PrrX “ x ,Y “ y s

“
ÿ

x

x PrrX “ xs “ ErX s
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Why We Need More than One Type of
Conditional Expectation
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Conditional Expectation

We can also define conditional expectations for continuous random
variables.

Definition
The conditional expectation of a discrete random variable Y given that X “ x is
defined as

ErY | X “ xs “
ÿ

y

y PrrY “ y | X “ xs.

The conditional expectation of a continuous random variable Y given that X “ x
is defined as

ErY | X “ xs “

ż 8

´8

y fY |X“xpyq dy ,

We assume absolute convergence in each case.
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Motivating Example

Problem
A stick of length one is broken at a random point, uniformly
distributed over the stick. The remaining piece is broken once
more.

Find the expected value of the piece that now remains.

17 / 63



Motivating Example

Let X denote the random variable giving the length of the first
remaining piece. Then X is uniformly distributed over the unit
interval p0, 1q.

Let Y denote the random variable giving the length of the second
remaining piece. Then Y is uniformly distributed over the shorter
interval p0,X q.
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Motivating Example: Interpretation

Given that X “ x , the random variable Y is uniformly distributed
over the interval p0, xq. In other words,

Y | X “ x

has the density function

fY |X“xpyq “
1

x

for all y in p0, xq.
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Motivating Example: Expectation

For a random variable Z that is uniformly distributed on the interval pa, bq, we
have

ErZ s “

ż b

a

x
1

b ´ a
dx “

1

b ´ a

1

2
x2
ˇ

ˇ

ˇ

ˇ

b

a

“
b2 ´ a2

2pb ´ aq
“

b ` a

2
.

Example

Since the random variable X is uniformly distributed over the interval p0, 1q, we
have

ErX s “
1` 0

2
“

1

2
.
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Motivating Example

Example

Since Y |X “ x is uniformly distributed over p0, xq, we get

ErY | X “ xs “

ż x

0

y
1

x
dy “

x ` 0

2
“

x

2
.

Does this solve the problem?

Now we know the expected length of the second remaining piece,
given that we know the length x of the first remaining piece of the
stick.
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Motivating Example

We can also define a random variable ErY | X s that satisfies

ErY | X spωq “ ErY | X “ X pωqs.

We expect that

ErErY | X ss “ ErX {2s “
1

4
.

Now this solves the problem. The expected length of the remaining
piece is 1/4 of the length of the stick.
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Conditional Expectation given a Random
Variable
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Motivation

Question

How should we think about ErX | Y s?

Answer

Suppose that Y is a discrete random variable. If we observe one of the values y
of Y , then the conditional expectation should be given by

ErX | Y “ y s.

If we do not know the value y of Y , then we need to contend ourselves with
the possible expectations

ErX | Y “ y1s, ErX | Y “ y2s, ErX | Y “ y2s, . . .

So ErX | Y s should be a σpY q-measurable random variable itself.

24 / 63



Definition

Definition
Let X and Y be two discrete random variables.

The conditional expectation ErX | Y s of X given Y is the
random variable defined by

ErX | Y spωq “ ErX | Y “ Y pωqs.

Caveat

Sometimes ErX | Y s is defined differently as a BpRq-measurable function
y ÞÑ ErX | Y “ y s. We prefer to think about ErX | Y s as a function Ω Ñ R.
The two definitions are obviously not equivalent. Our choice generalizes nicely.
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A Pair of Fair Coin Flips

Example

Suppose that X and Y are random variables describing independent
fair coin flips with values 0 and 1. Then the sample space of
pX ,Y q is given by

Ω “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu.

Let Z denote the random variable Z “ X ` Y . Then we have

Z p0, 0q “ 0, Z p0, 1q “ 1, Z p1, 0q “ 1, Z p1, 1q “ 2.
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A Pair of Fair Coin Flips

Example (Continued.)

Suppose that we want to know ErZ | X s. We calculate

ErZ | X “ 0s “ 0 ¨
1

2
` 1 ¨

1

2
“

1

2
,

ErZ | X “ 1s “ 1 ¨
1

2
` 2 ¨

1

2
“

3

2
.

Then
ErZ | X sp0, 0q “ 1

2 , ErZ | X sp0, 1q “ 1
2 ,

ErZ | X sp1, 0q “ 3
2 , ErZ | X sp1, 1q “ 3

2 .
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A Pair of Fair Coin Flips

Example (Continued.)

Suppose that we now want to know ErZ | Y s. We calculate

ErZ | Y “ 0s “ 0 ¨
1

2
` 1 ¨

1

2
“

1

2
,

ErZ | Y “ 1s “ 1 ¨
1

2
` 2 ¨

1

2
“

3

2
.

Then
ErZ | Y sp0, 0q “ 1

2 , ErZ | Y sp0, 1q “ 3
2 ,

ErZ | Y sp1, 0q “ 1
2 , ErZ | Y sp1, 1q “ 3

2 .
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A Pair of Fair Coin Flips

Example (Continued.)

Suppose that we now want to know ErX | Z s. We calculate

ErX | Z “ 0s “ 0

ErX | Z “ 1s “ 0 ¨
1

2
` 1 ¨

1

2
“

1

2
,

ErX | Z “ 2s “ 1

Then
ErX | Z sp0, 0q “ 0, ErX | Z sp0, 1q “ 1

2 ,

ErX | Z sp1, 0q “ 1
2 , ErX | Z sp1, 1q “ 1.
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Properties of the Conditional Expectation
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Functions

Proposition

If X is a function of Y , then ErX | Y s “ X .

Proof.

Suppose that X “ f pY q. Then

ErX | Y spωq “ ErX | Y “ Y pωqs

“ Erf pY pωqq | Y “ Y pωqs

“ f pY pωqq “ X pωq.
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Independence

Proposition

If X and Y are independent, then ErX | Y s “ ErX s.

Proof.
For all ω in Ω, we have

ErX | Y spωq “ ErX | Y “ Y pωqs “ ErX s.
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Linearity

Proposition

If a and b are real numbers and X ,Y , and Z discrete random
variables, then

EraX ` bY | Z s “ aErX | Z s ` bErY | Z s.
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A Pair of Fair Coin Flips

Example

Suppose that X and Y are independent random variables describing
fair coin flips with values 0 and 1. Let Z “ X ` Y . We determined
ErZ |X s, but it was a bit cumbersome. Here is an easier way:

ErZ | X s “ ErX ` Y | X s by definition

“ ErX | X s ` ErY | X s by linearity

“ X ` ErY s by function and by independence

“ X `
1

2
.
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Law of the Iterated Expectation

Proposition

ErErX | Y ss “ ErX s.

Proof.

ErErX | Y ss “
ÿ

y

ErErX | Y s|Y “ y sPrrY “ y s

“
ÿ

y

ErX | Y “ y sPrrY “ y s

“ ErX s
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Applications
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Wald’s Theorem

Theorem
Suppose that X1,X2, . . . are independent random variables, all with
the same mean. Suppose that N is a nonnegative, integer-valued
random variable that is independent of the Xi ’s. If ErX1s ă 8 and
ErNs ă 8, then

E

«

N
ÿ

k“1

Xi

ff

“ ErNsErX1s.
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Proof.
By double expectation, we have

E

«

N
ÿ

k“1

Xi

ff

“ E

«

E

«

N
ÿ

k“1

Xi

ˇ

ˇ

ˇ

ˇ

N

ffff

“

8
ÿ

n“1

E

«

N
ÿ

k“1

Xi

ˇ

ˇ

ˇ

ˇ

N “ n

ff

PrrN “ ns

“

8
ÿ

n“1

E

«

n
ÿ

k“1

Xi

ˇ

ˇ

ˇ

ˇ

N “ n

ff

PrrN “ ns
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Proof. (Continued)

E

«

N
ÿ

k“1

Xi

ff

“

8
ÿ

n“1

E

«

n
ÿ

k“1

Xi

ˇ

ˇ

ˇ

ˇ

N “ n

ff

PrrN “ ns

“

8
ÿ

n“1

E

«

n
ÿ

k“1

Xi

ff

PrrN “ ns

“

8
ÿ

n“1

nE rX1sPrrN “ ns

“ ErX1s

8
ÿ

n“1

n PrrN “ ns “ ErX1sErNs. 2
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Dice

Example

Suppose that we roll a navy die. The face value N of the die ranges
from 1 to 6. Depending on the face value of the navy die, we roll N
ivory dice and sum their values.

On average, what is the resulting value of the sum face values of
the N ivory dice?
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Dice: Solution

Solution
Let X1, . . . ,X6 denote the random variables describing the face
values of the ivory dice. By Wald’s theorem, we have

E

«

N
ÿ

k“1

Xi

ff

“ ErNsErX1s

“

ˆ

1` 2` 3` 4` 5` 6

6

˙ˆ

1` 2` 3` 4` 5` 6

6

˙

“

ˆ

7

2

˙2

“
49

4
“ 12.25
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Conditional Expectation Given a σ-Algebra
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Motivation

Suppose that a sample space Ω is partitioned into measurable sets

B1,B2, . . . ,Bn.

We know know the expectation of a random variable X given that
one of the events Bk will happen, but we do not know which one.

We want to form a conditional expectation ErX | Gs with
G “ σpB1,B2, . . . ,Bnq such that

ErX | Gspωq “ ErX | Bks “
ErX IBk

s

PrrBks

for ω P Bk . Then ErErX | Gs s “ ErX s.
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Conditional Expectation

Definition
Let F be a σ-algebra with sub-σ-algebra G. A random variable Y is
called a conditional expectation of X given G, written
Y “ ErX | Gs if and only if

1 Y is G-measurable

2 ErY IG s “ ErX IG s for all G P G.
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Single Event

Example

Let A and B be events with 0 ă PrrAs ă 1. If we define G “ σpBq,
then G “ tH,B ,Bc ,Ωu. Then

ErX | Gs “ ErX IBs

PrrBs
IB `

ErX IBc s

PrrBcs
IBc .

Indeed, the right-hand side is clearly G-measurable. We have

ErErX | GsIB s “ ErX IBs

and
ErErX | GsIBc s “ ErX IBc s.
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Interpretation

Interpretation

We would like to think of ErX | Gs as the average of X pωq over all
ω which is consistent with the information encoded in G.
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σ-Algebra Generated by a Random Variable

Example

Suppose that pΩ,F ,Prq is a probability space with
Ω “ ta, b, c , d , e, f u, F “ 2Ω, and Pr uniform. Define a random
variable X by

X paq “ 1, X pbq “ 3, X pcq “ 3, X pdq “ 5, X peq “ 5, X pf q “ 7.

Suppose that another random variable Z is given by

Z paq “ 3, Z pbq “ 3, Z pcq “ 3, Z pdq “ 3, Z peq “ 2, Z pf q “ 2.

We want to determine ErX | Gs with G “ σpZ q.
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σ-Algebra Generated by a Random Variable

Example

Since

Z paq “ 3, Z pbq “ 3, Z pcq “ 3, Z pdq “ 3, Z peq “ 2, Z pf q “ 2,

the σ-algebra σpZ q is generated by the event Z´1p3q and its
complement

Z´1
p3q “ ta, b, c , du and Z´1

p2q “ te, f u.
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σ-Algebra Generated by a Random Variable

Example

Now consider X on Z´1p3q “ ta, b, c , du and its complement

X paq “ 1, X pbq “ 3, X pcq “ 3, X pdq “ 5, X peq “ 5, X pf q “ 7.

Since the distribution is uniform, we have

ErX | σpZ qspωq “

#

3 if ω P ta, b, c , du,

6 if ω P te, f u
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Finite Number of Events

Example

Suppose that G is generated by a finite partition

B1,B2, . . . ,Bn

of the sample space Ω. Then

ErX | Gspωq “
n
ÿ

k“1

ak IBk
,

where

ak “
ErX IBk

s

PrrBks
“ ErX | Bks.
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Finite Number of Events

Example (Continued.)

If

ErX | Gs “
n
ÿ

k“1

ErX IBk
s

PrrBks
IBk
,

then it is certainly G-measurable and

ErErX | Gs sIBk
s “ ErX IBk

s.

Therefore,

ErErX | Gs s “
n
ÿ

k“1

ErX IBk
s “ ErX IΩs “ ErX s.
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Conditional Expectation: Main Questions

Definition
Let F be a σ-algebra with sub-σ-algebra G. A random variable Y is
called a conditional expectation of X given G, written
Y “ ErX | Gs if and only if

1 Y is G-measurable

2 ErY IG s “ ErX IG s for all G P G.

Questions
1 Is the conditional expectation unique?

2 Does conditional expectation always exist?
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Uniqueness

Suppose that Y and Y 1 are G-measurable random variables such
that

ErY IG s “ ErX IG s “ ErY 1 IG s

holds for all G P G. Then G “ tY ą Y 1u is an event in G. We have

0 “ ErY IAs ´ ErY 1 IAs “ ErpY ´ Y 1
qIAs.

Since pY ´ Y 1qIA ě 0, we have PrrAs “ 0.

We can conclude that Y ď Y 1 almost surely (meaning with
probability 1). Similarly, Y 1 ď Y almost surely.

So Y 1 “ Y almost surely.
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Existence (Sketch for those who know integration on measures)

Let X` “ maxtX , 0u and X´ “ X` ´ X . We can define two finite
measures on pΩ,Fq by

Q˘pAq :“ ErX˘ IAs

for all A P F .

If A satisfies PrrAs “ 0, then Q˘pAq “ 0.

Therefore, it follows from the Radon-Nikodym theorem that there
exist densities Y ˘ such that

Q˘pAq “

ż

A

Y ˘d Pr “ ErY ˘ IAs.

Now define the conditional expectation by Y “ Y ` ´ Y ´.
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Linearity

Proposition

EraX ` bY | Gs “ aErX | Gs ` bErY | Gs.

Proof.
The right-hand side is G-measurable by definition, hence, for G P G

ErIG paErX | Gs ` bErY | Gsqs “ aErIGErX | Gss ` bErIGErY | Gss
“ aErIGX s ` bErIGY s

“ ErIG paX ` bY qs.
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Monotonicity
Proposition

If X ě Y almost surely, then

ErX | Gs ě ErY | Gs.

Proof.

Let A denote the event tErX | Gs ă ErY | Gsu P G.
Since we have X ě Y , we get

ErIApX ´ Y qs ě 0.

Therefore, PrrAs “ 0.

For this proof, make sure that you understand what the event A encodes.
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Products

Proposition

If Er|XY |s ă 8 and Y is G-measurable, then

ErXY | Gs “ YErX | Gs and ErY | Gs “ ErY | Y s “ Y .

The proof is a bit more involved.
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Tower Property

Proposition

Let G Ď F Ď A be σ-algebras. Let X be an A-measurable random variable.
Then

ErErX | Fs | Gs “ ErErX | Gs | Fs “ ErX | Gs.

Proof.

The second equality follows from the product property with X “ 1 and
Y “ ErX | Gs, since Y is F -measurable.

If A P G, then A P F and

ErIA ErErX | Fs | Gss “ ErIAErX | Fss
“ ErIA X s

“ ErIA ErX | Gss.
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Triangle Inequality

Proposition

Er|X | | Gs ě |ErX | Gs|
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Independence

Proposition

If σpX q and G are independent σ-algebras, so

PrrAX Bs “ PrrAsPrrBs

for all A P σpX q and B P G, then

ErX | Gs “ ErX s.
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Lack of Information

Proposition

If PrrAs P t0, 1u for all A P G, then

ErX | Gs “ ErX s.
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Best Prediction

The conditional expectation ErX | Gs is supposed to be the “best”
prediction one can make about X if we only have the information
contained in σ-algebra G.

Extremal Case 1

If σpX q Ď G, then
ErX | Gs “ X .

Extremal Case 2

If σpX q and G are independent, then

ErX | Gs “ ErX s.
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Best Prediction

Proposition

Let G Ď A be σ-algebras. Let X be an A-measurable random
variable with ErX 2s ă 8. Then for any G-measurable random
variable Y with ErY 2s ă 8, we have

ErpX ´ Y q2s ě ErpX ´ ErX | Gsq2s

with equality if and only if Y “ ErX | Gs.
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