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Power of Randomized Algorithms

Decision Problems and Formal Languages

We will now define a few complexity classes that are used to
characterize efficient randomized algorithms.

The complexity classes are defined in terms of decision problems.

The set of inputs of ’yes’ instances to the decision problem
corresponds to a language L Ď t0, 1u˚.

Thus, each decision problem corresponds to a formal language.
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Common Deterministic Complexity Classes
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The Class P of Deterministic Polynomial Time DP

Definition
The class P consists of all languages L that do have a
polynomial-time algorithm A such that

1 x P L implies Apxq accepts,

2 x R L implies Apxq rejects.

Remark
The two conditions imply

1 x P L implies PrrApxq acceptss “ 1,
2 x R L implies PrrApxq rejectss “ 1.

We are going to relax these conditions for the classes RP, co-RP, and BPP.
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The Class NP of Nondeterministic Polynomial Time DP

Definition

A language L is in NP if and only if there exists a polynomial ppxq
and an polynomial-time algorithm A such that for every input
x P t0, 1u˚, we have

x P L if and only if Dw P t0, 1upp|x |qrApx ,wq acceptss

A string w such that Apx ,wq accepts is called a certificate, a
proof, or a witness.

We may consider w as a concise proof of the fact that x P L. This
proof can be verified by A.

5 / 41



Complements

Definition
Given a decision problem L, its complement is the same problem
with the yes and no answers reversed.

Example

Suppose that L is the language of squares

L “ t0, 1, 4, 9, 16, 25, . . .u.

Then the complement of L is given by the set of non-squares

L “ t2, 3, 5, 6, 7, 8, 10, . . .u.
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The Class co-NP

Definition

co-NP “ tL : L P NPu

Example

The language UNSAT of unsatisfiable boolean formulas is in co-NP.

Careful!
Need to check all possible witness strings!
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The Class co-NP

Definition
A language L is in co-NP if and only if there exists a polynomial
ppxq and an polynomial-time algorithm A such that for every input
x P t0, 1u˚, we have

x P L if and only if @w P t0, 1upp|x |qrApx ,wq acceptss
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Examples

Example (INDSET)

Given a graph G “ pV ,E q and a positive integer k , does G have an
independent set of size k?
The independent set problem (INDSET) is in NP.

Example (INDSET)

Given a graph G “ pV ,E q and a positive integer k , does G have no
independent set of size k?
The co-independent set problem (INDSET ) is in co-NP.
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The Polynomial Hierarchy PH

The polynomial hierarchy generalizes NP and co-NP. We have Σ0 “ P “ Π0.

Definition

We have Σ1 “ NP. A language L belongs to Σ1 iff

x P L if and only if Dw rApx ,wq acceptss

Definition

We have Π1 “ co-NP. A language L belongs to Π1 iff

x P L if and only if @w rApx ,wq acceptss
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The Polynomial Hierarchy PH

Definition
A language L belongs to Σ2 iff

x P L if and only if Dw1@w2rApx ,w1,w2q acceptss

Definition
A language L belongs to Π2 iff

x P L if and only if @w1Dw2rApx ,w1,w2q acceptss

The domain of each quantifier is t0, 1upp|x |q for some polynomial p.
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The Polynomial Hierarchy PH

Definition

A language L belongs to Σ2k iff

x P L if and only if Dw1@w2 ¨ ¨ ¨ Dw2k´1@w2krApx ,w1,w2, . . . ,w2k´1,w2kq acceptss

Definition

A language L belongs to Σ2k`1 iff

x P L if and only if Dw1@w2 ¨ ¨ ¨ @w2kDw2k`1rApx ,w1,w2, . . . ,w2k ,w2k`1q acceptss

For Σk , we alternate between D and @ quantifiers, starting with an D quantifier.
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The Polynomial Hierarchy PH

Definition
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Example

Example (MAX-INDSET)

The language

MAX-INDSET “ tpG , kq | the max. indep. set of G is of size ku

does not seem to be contained in NP or co-NP. However, we have
MAX-INDSET in Σ2, since pG , kq is in MAX-INDSET if and only if

there exists a set S of k vertices, such that
for all sets T containing more than k vertices,
S is an independent set and
T is not an independent set.
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Basic Properties

Proposition

Πk “ coΣk

Proposition

Σk Ď Σk`1, Σk Ď Πk`1, Πk Ď Σk`1, Πk Ď Πk`1.

Proposition

Σk ,Πk Ď PSPACE
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The Polynomial Hierarchy

Π3Σ3

Π2Σ2

Π1 “ co-NPΣ1 “ NP

Σ0 “ P
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Oracles

We can also formulate the polynomial hierarchy with the help of
oracles.

Definition

Σk “

#

P if k “ 0,

NPΣk´1 if k ą 0.

In other words, we have

Σ0 “ P,Σ1 “ NP,Σ2 “ NPNP,Σ3 “ NPNPNP
, . . .

17 / 41



The Polynomial Hierarchy PH

Definition

PH “

8
ď

k“1

Σk
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The Class PSPACE of Polynomial-Space Bounded DP

Definition
The class of all decision problems that can be solved using a
polynomial amount of space.

Proposition

PH Ď PSPACE.
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Randomized Complexity Classes
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Polynomial Time Randomized Algorithms

The run-time of a randomized algorithm can vary for each run, even
when the input stays the same. So how do we define running time?

Definition
For a randomized algorithm A, we say that A runs in time

t : N Ñ N

if and only if A takes at most tp|s|q steps on every input s and
every sequence of random coin tosses.
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The Class RP of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range 0 ď ε ď 1{2.

The class RP consists of all languages L that do have a
polynomial-time randomized algorithm A such that

1 x P L implies PrrApxq acceptss ě 1´ ε,

2 x R L implies PrrApxq rejectss “ 1.

One-Sided Error
Randomized algorithms in RP may err on ’yes’ instances, but not
on ’no’ instances.

22 / 41



Reducing the Probability of Error

We can decrease the probability of error of our one-sided error
algorithm A as follows.

Given an input x , run Apxq k-times and return ’yes’ if one of the k
runs returned yes.

The error probability of the new algorithm is at most 2´k .
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Relations to Deterministic Complexity Classes

Proposition

P Ď RP.

This is clear from the definitions.
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Relations to Deterministic Complexity Classes

Proposition

RP Ď NP.

Proof.
If L belongs to RP, then for x in L there exists a sequence r of coin
flips such that Apx , rq accepts. We can use the sequence r as a
witness for L P NP.

25 / 41



Open Problems

Problem
Does

P “ RP?

Problem
Is

RP Ĺ NP?
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The Class co-RP of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range 0 ď ε ď 1{2.
The class co-RP consists of all languages L whose complement L is
in RP. In other words, L is in co-RP if and only if there exists a
polynomial-time randomized algorithm A such that

1 x P L implies PrrApxq acceptss “ 1,

2 x R L implies PrrApxq rejectss ě 1´ ε.

One-Sided Error
Randomized algorithms in co-RP may err on ’no’ instances, but
not on ’yes’ instances.
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Error Reduction

By repeating a co-RP algorithm k times, we can reduce the error
probability ε to 2´k or less.
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The Class BPP of Bounded-Error Probabilistic Polynomial Time DP

Definition

Let ε be a constant in the range 0 ď ε ă 1{2.

The class BPP consists of all languages L such that there exists a
polynomial-time randomized algorithm A such that

1 x P L implies PrrApxq acceptss ě 1´ ε,

2 x R L implies PrrApxq rejectss ě 1´ ε.
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Containments

Proposition

We have
RP Ď BPP

and
co-RP Ď BPP.

This follows from the definitions and error reduction.
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Containments

Proposition

BPP Ď PSPACE.
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Open Problem

Proposition

P Ď BPP.

Problem
Is

P “ BPP ?
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Relationship Between NP and BPP

Proposition (Ko)

If NP Ď BPP, then NP “ RP.
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Relationship Between NP and BPP

Proposition

If NP Ď BPP, then PH “ BPP.
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BPP and the Polynomial Hierarchy

Proposition

BPP Ď Σ2 X Π2.
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The Class ZPP of Zero-Error Probabilistic Polynomial Time DP

Definition
The class ZPP consists of all languages L such that there exists a
randomized algorithm A that always decides L correctly and runs in
expected polynomial time.
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ZPP and its relation to RP and co-RP

Proposition

ZPP “ RPX co-RP.
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(ZPP Ď RPX co-RP)

Proof.
Suppose that L P ZPP. There exists Las Vegas algorithm A to decide in
expected polynomial-time whether an input x belongs to L.

Algorithm for RP:
Run the algorithm A on input x for twice the expected running time steps. If A
returned an answer, give that answer. Otherwise return ’no’.
By Markov’s Inequality, the probability that it will yield an answer before we stop
it is at least 1{2. This means the probability that the algorithm will give a wrong
answer on a yes instance is at most 1{2.

Algorithm for co-RP:
The co-RP algorithm is identical, except that we return ’yes’ if A does not return
an answer.

Thus ZPP Ď RPX co-RP.
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(ZPP Ě RPX co-RP)

Proof. (Continued)

Suppose that the language L belongs to RPX co-RP.

This means that there exists
1 a polynomial-time randomized algorithm A recognizing L P RP, and
2 a polynomial-time randomized algorithm B recognizing L P co-RP.

Given an input x , do the following:
loop

1 run Apxq. return ’yes’ if A returns yes.
2 run Bpxq. return ’no’ if Bpxq returns no.

end

If an answer is given, then it is correct.
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(ZPP Ě RPX co-RP)

Proof. (Continued)

Let T denote the worst-case runtime of Apxq;Bpxq, that is, T
denotes the worst-case runtime of one iteration of the loop. Then
T “ pp|x |q for some polynomial p.

The expected running time of the loop is bounded from above by

8
ÿ

k“0

T
1

2k
ď 2T .

Therefore, the expected running time of the loop is polynomial in
the size of the input x . Thus, RPX co-RP Ď ZPP.
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Overview

PSPACEΣ2 X Π2

NP

BPP

coNP

RP

coRP

ZPPP
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