Complexity Classes

Andreas Klappenecker

Texas A&M University

(C) 2018 by Andreas Klappenecker. All rights reserved.

Decision Problems and Formal Languages We will now define a few **complexity classes** that are used to characterize **efficient randomized algorithms**. The complexity classes are defined in terms of decision problems. The set of inputs of 'yes' instances to the decision problem corresponds to a language $L \subseteq \{0, 1\}^*$.

Thus, each decision problem corresponds to a formal language.

Common Deterministic Complexity Classes

The Class \mathbf{P} of Deterministic Polynomial Time DP

Definition

The class \mathbf{P} consists of all languages L that do have a polynomial-time algorithm A such that

• $x \in L$ implies A(x) accepts,

• $x \notin L$ implies A(x) rejects.

The Class **P** of Deterministic Polynomial Time DP

Definition

The class \mathbf{P} consists of all languages L that do have a polynomial-time algorithm A such that

• $x \in L$ implies A(x) accepts,

• $x \notin L$ implies A(x) rejects.

Remark

The two conditions imply

- $x \in L$ implies Pr[A(x) accepts] = 1,
- $x \notin L$ implies $\Pr[A(x) \text{ rejects}] = 1$.

We are going to relax these conditions for the classes **RP**, **co-RP**, and **BPP**.

The Class **NP** of Nondeterministic Polynomial Time DP

Definition

A language L is in **NP** if and only if there exists a polynomial p(x)and an polynomial-time algorithm A such that for every input $x \in \{0, 1\}^*$, we have

 $x \in L$ if and only if $\exists w \in \{0, 1\}^{p(|x|)}[A(x, w) \text{ accepts}]$

A string w such that A(x, w) accepts is called a **certificate**, a **proof**, or a **witness**.

We may consider w as a concise proof of the fact that $x \in L$. This proof can be verified by A.

Complements

Definition

Given a decision problem *L*, its **complement** is the same problem with the yes and no answers reversed.

Example

Suppose that L is the language of squares

$$L = \{0, 1, 4, 9, 16, 25, \ldots\}.$$

Then the complement of L is given by the set of non-squares

$$\overline{L} = \{2, 3, 5, 6, 7, 8, 10, \ldots\}.$$

$$\mathbf{co-NP} = \{L \colon \overline{L} \in \mathbf{NP}\}$$

Example

The language UNSAT of unsatisfiable boolean formulas is in co-NP.

$$\mathbf{co-NP} = \{L \colon \overline{L} \in \mathbf{NP}\}$$

Example

The language UNSAT of unsatisfiable boolean formulas is in co-NP.

Careful!

Need to check all possible witness strings!

A language *L* is in **co-NP** if and only if there exists a polynomial p(x) and an polynomial-time algorithm *A* such that for every input $x \in \{0, 1\}^*$, we have

 $x \in L$ if and only if $\forall w \in \{0, 1\}^{p(|x|)}[A(x, w) \text{ accepts}]$

Example (INDSET)

Given a graph G = (V, E) and a positive integer k, does G have an independent set of size k?

The independent set problem (INDSET) is in **NP**.

Example (INDSET)

Given a graph G = (V, E) and a positive integer k, does G have no independent set of size k? The co-independent set problem ($\overline{\text{INDSET}}$) is in **co-NP**.

The Polynomial Hierarchy PH

The polynomial hierarchy generalizes **NP** and **co-NP**. We have $\Sigma_0 = \mathbf{P} = \Pi_0$.

Definition

```
We have \Sigma_1 = \mathbf{NP}. A language L belongs to \Sigma_1 iff
```

```
x \in L if and only if \exists w [A(x, w) \text{ accepts}]
```

Definition

We have $\Pi_1 = \mathbf{co-NP}$. A language *L* belongs to Π_1 iff

 $x \in L$ if and only if $\forall w [A(x, w) \text{ accepts}]$

The Polynomial Hierarchy PH

Definition

A language L belongs to Σ_2 iff

 $x \in L$ if and only if $\exists w_1 \forall w_2 [A(x, w_1, w_2) \text{ accepts}]$

Definition

A language L belongs to Π_2 iff

 $x \in L$ if and only if $\forall w_1 \exists w_2 [A(x, w_1, w_2) \text{ accepts}]$

The domain of each quantifier is $\{0, 1\}^{p(|x|)}$ for some polynomial p.

A language L belongs to Σ_{2k} iff

 $x \in L$ if and only if $\exists w_1 \forall w_2 \cdots \exists w_{2k-1} \forall w_{2k} [A(x, w_1, w_2, \dots, w_{2k-1}, w_{2k}) \text{ accepts}]$

Definition

A language L belongs to Σ_{2k+1} iff

 $x \in L$ if and only if $\exists w_1 \forall w_2 \cdots \forall w_{2k} \exists w_{2k+1} [A(x, w_1, w_2, \dots, w_{2k}, w_{2k+1}) \text{ accepts}]$

For Σ_k , we alternate between \exists and \forall quantifiers, starting with an \exists quantifier.

```
A language L belongs to \Pi_{2k} iff
```

 $x \in L$ if and only if $\forall w_1 \exists w_2 \cdots \forall w_{2k-1} \exists w_{2k} [A(x, w_1, w_2, \dots, w_{2k-1}, w_{2k}) \text{ accepts}]$

Definition

A language L belongs to Π_{2k+1} iff

 $x \in L$ if and only if $\forall w_1 \exists w_2 \cdots \exists w_{2k} \forall w_{2k+1} [A(x, w_1, w_2, \dots, w_{2k}, w_{2k+1}) \text{ accepts}]$

For Π_k , we alternate between \forall and \exists quantifiers, starting with a \forall quantifier.

Example

Example (MAX-INDSET)

The language

MAX-INDSET = {(G, k) | the max. indep. set of G is of size k}

does not seem to be contained in NP or co-NP. However, we have MAX-INDSET in Σ_2 , since (G, k) is in MAX-INDSET if and only if there exists a set S of k vertices, such that for all sets T containing more than k vertices, S is an independent set and T is not an independent set.

Basic Properties

Proposition

$$\Pi_k = co\Sigma_k$$

Basic Properties

Proposition

$$\Pi_k = co\Sigma_k$$

Proposition

$$\Sigma_k \subseteq \Sigma_{k+1}, \quad \Sigma_k \subseteq \Pi_{k+1}, \quad \Pi_k \subseteq \Sigma_{k+1}, \quad \Pi_k \subseteq \Pi_{k+1}.$$

Basic Properties

Proposition

$$\Pi_k = co\Sigma_k$$

Proposition

$$\Sigma_k \subseteq \Sigma_{k+1}, \quad \Sigma_k \subseteq \Pi_{k+1}, \quad \Pi_k \subseteq \Sigma_{k+1}, \quad \Pi_k \subseteq \Pi_{k+1}.$$

Proposition

$$\Sigma_k, \Pi_k \subseteq \mathsf{PSPACE}$$

The Polynomial Hierarchy

Oracles

We can also formulate the polynomial hierarchy with the help of oracles.

Definition

$$\mathbf{E}_k = \begin{cases} \mathbf{P} & \text{if } k = 0, \\ \mathbf{NP}^{\Sigma_{k-1}} & \text{if } k > 0. \end{cases}$$

In other words, we have

$$\boldsymbol{\Sigma}_0 = \boldsymbol{\mathsf{P}}, \boldsymbol{\Sigma}_1 = \boldsymbol{\mathsf{NP}}, \boldsymbol{\Sigma}_2 = \boldsymbol{\mathsf{NP}}^{\boldsymbol{\mathsf{NP}}}, \boldsymbol{\Sigma}_3 = \boldsymbol{\mathsf{NP}}^{\boldsymbol{\mathsf{NP}}\boldsymbol{\mathsf{NP}}}, \dots$$

The Polynomial Hierarchy PH

Definition

$$\mathsf{PH} = igcup_{k=1}^\infty \Sigma_k$$

The Class **PSPACE** of Polynomial-Space Bounded DP

Definition

The class of all decision problems that can be solved using a polynomial amount of space.

Proposition

$PH \subseteq PSPACE$.

Randomized Complexity Classes

The run-time of a randomized algorithm can vary for each run, even when the input stays the same. So how do we define running time?

Definition

For a randomized algorithm A, we say that A runs in time

 $t \colon \mathbf{N} \to \mathbf{N}$

if and only if A takes at most t(|s|) steps on every input s and every sequence of random coin tosses.

The Class **RP** of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range $0 \leq \varepsilon \leq 1/2$.

The class **RP** consists of all languages L that do have a polynomial-time randomized algorithm A such that

•
$$x \in L$$
 implies $\Pr[A(x) \text{ accepts}] \ge 1 - \varepsilon$,

•
$$x \notin L$$
 implies $\Pr[A(x) \text{ rejects}] = 1$.

One-Sided Error

Randomized algorithms in **RP** may err on 'yes' instances, but not on 'no' instances.

We can decrease the probability of error of our one-sided error algorithm A as follows.

Given an input x, run A(x) k-times and return 'yes' if one of the k runs returned yes.

The error probability of the new algorithm is at most 2^{-k} .

Relations to Deterministic Complexity Classes

This is clear from the definitions.

Proposition $\mathbf{RP} \subseteq \mathbf{NP}.$

Proof.

If *L* belongs to **RP**, then for *x* in *L* there exists a sequence *r* of coin flips such that A(x, r) accepts. We can use the sequence *r* as a witness for $L \in \mathbf{NP}$.

$\label{eq:problem} \begin{array}{l} \mbox{Problem} \\ \mbox{Does} \\ \mbox{P} = \mbox{RP}? \end{array}$

Problem	
Does	
	$\mathbf{P} = \mathbf{R}\mathbf{P}?$
Problem	
ls	
	RP ⊊ NP?

The Class **co-RP** of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range $0 \le \varepsilon \le 1/2$. The class **co-RP** consists of all languages *L* whose complement \overline{L} is in **RP**. In other words, *L* is in **co-RP** if and only if there exists a polynomial-time randomized algorithm *A* such that

- $x \in L$ implies Pr[A(x) accepts] = 1,
- $x \notin L$ implies $\Pr[A(x) \text{ rejects}] \ge 1 \varepsilon$.

One-Sided Error

Randomized algorithms in **co-RP** may err on 'no' instances, but not on 'yes' instances.

By repeating a **co-RP** algorithm k times, we can reduce the error probability ε to 2^{-k} or less.

Let ε be a constant in the range $0 \leqslant \varepsilon < 1/2$.

The class **BPP** consists of all languages L such that there exists a polynomial-time randomized algorithm A such that

- $x \in L$ implies $\Pr[A(x) \text{ accepts}] \ge 1 \varepsilon$,
- $x \notin L$ implies $\Pr[A(x) \text{ rejects}] \ge 1 \varepsilon$.

This follows from the definitions and error reduction.

Proposition

$BPP \subseteq PSPACE$.

Proposition

$\mathbf{P} \subseteq \mathbf{BPP}$.

Proposition (Ko) If $NP \subseteq BPP$, then NP = RP.

Proposition If $NP \subseteq BPP$, then PH = BPP.

Proposition

$\textbf{BPP}\subseteq \Sigma_2\cap \Pi_2.$

The Class **ZPP** of Zero-Error Probabilistic Polynomial Time DP

Definition

The class **ZPP** consists of all languages L such that there exists a randomized algorithm A that always decides L correctly and runs in expected polynomial time.

ZPP and its relation to RP and co-RP

Proposition

$ZPP = RP \cap co-RP.$

$(\mathsf{ZPP} \subseteq \mathsf{RP} \cap \mathsf{co}\text{-}\mathsf{RP})$

Proof.

Suppose that $L \in \mathbb{ZPP}$. There exists Las Vegas algorithm A to decide in expected polynomial-time whether an input x belongs to L.

Algorithm for RP:

Run the algorithm A on input x for twice the expected running time steps. If A returned an answer, give that answer. Otherwise **return** 'no'.

By Markov's Inequality, the probability that it will yield an answer before we stop it is at least 1/2. This means the probability that the algorithm will give a wrong answer on a yes instance is at most 1/2.

Algorithm for co-RP:

The co-RP algorithm is identical, except that we return 'yes' if A does not return an answer.

```
Thus \mathbf{ZPP} \subseteq \mathbf{RP} \cap \mathbf{co} \cdot \mathbf{RP}.
```

$(\mathsf{ZPP} \supseteq \mathsf{RP} \cap \mathsf{co}\text{-}\mathsf{RP})$

Proof. (Continued)

Suppose that the language *L* belongs to $\mathbf{RP} \cap \mathbf{co} \cdot \mathbf{RP}$.

This means that there exists

a polynomial-time randomized algorithm A recognizing L ∈ RP, and
a polynomial-time randomized algorithm B recognizing L ∈ co-RP.
Given an input x, do the following:

loop

```
• run A(x). return 'yes' if A returns yes.
```

```
2 run B(x). return 'no' if B(x) returns no.
```

end

If an answer is given, then it is correct.

$(\mathsf{ZPP} \supseteq \mathsf{RP} \cap \mathsf{co}\text{-}\mathsf{RP})$

Proof. (Continued)

Let T denote the worst-case runtime of A(x); B(x), that is, T denotes the worst-case runtime of one iteration of the loop. Then T = p(|x|) for some polynomial p.

The expected running time of the loop is bounded from above by

$$\sum_{k=0}^{\infty} T \frac{1}{2^k} \leq 2T.$$

Therefore, the expected running time of the loop is polynomial in the size of the input x. Thus, $\mathbf{RP} \cap \mathbf{co} \cdot \mathbf{RP} \subseteq \mathbf{ZPP}$.

