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Markov’s Inequality

Recall the following basic tail inequality.

Theorem (Markov’s Inequality)

If X is a nonnegative random variable and t a positive real number,
then

PrrX ě ts ď
ErX s

t
.

2 / 42



Markov’s Inequality

Proof.
Let Y denote the indicator random variable of the event X ě t, so

Y pωq “

"

1 if X pωq ě t,
0 if X pωq ă t.

The expectation value of X satisfies

ErX s ě ErtY s “ t ErY s “ t PrrX ě ts,

which proves the claim.
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Variance

Definition

The variance VarrX s of a discrete random variable X is defined by

VarrX s “ ErpX ´ ErX sq2s “ ErX 2
s ´ ErX s2,

whenever this expression is well-defined. The variance measures the
squared deviation from the expected value ErX s.
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Chebychev’s Inequality

As a consequence, we obtain the following concentration inequality.

Theorem (Chebychev’s inequality)

If X is a random variable, then

PrrpX ´ E rX sq2 ě βs ď
VarrX s

β
. (1)
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Proof.
Given the random variable X , we can define the new random
variables Y “ X ´ ErX s and Y 2. Since Y 2 is a nonnegative
random variable, Markov’s inequality shows that

PrrY 2
ě βs ď

ErY 2s

β
.

Since ErY 2s “ ErpX ´ ErX sq2s “ VarpX q, we have

PrrpX ´ ErX sq2 ě βs “ PrrY 2
ě βs ď

ErY 2s

β
“

VarrX s

β
.
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Chebychev’s Inequality

We can reformulate this in the following way.

Corollary (Chebychev’s inequality)

If X is a random variable, then

Prr|X ´ E rX s| ě ts ď
VarrX s

t2
. (2)

Proof.

Prr|X ´ E rX s| ě ts “ PrrpX ´ ErX sq2 ě t2
s ď

VarrX s

t2
.
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Question

Consider now the sum of n independent random variables Xk ,

X “ X1 ` X2 ` ¨ ¨ ¨ ` Xn.

What kind of bound can we get in this case?

Can we improve on Chebychev’s inequality in this case?
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Sums of Independent Random Variables
Proposition

Let X1,X2, . . . ,Xn be independent random variables. Then for real numbers
t ą 0, we get

Pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

Xk ´

n
ÿ

k“1

ErXks

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

ff

ď

n
ÿ

k“1

VarrXks

t2
.

Proof.

We can apply Chebychev’s inequality to
řn

k“1 Xk . Since the random variables Xk

are independent, the variance satisfies

Var

«

n
ÿ

k“1

Xk

ff

“

n
ÿ

k“1

VarrXks.
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Averages of I.I.D. Random Variables

Corollary

Let X1,X2, . . . ,Xn be independent identically distributed random
variables with µ “ ErXks. Then the average of these random
variables satisfies

Pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

k“1

Xk ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

ff

ď
VarrX1s

nt2
.
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Weak Law of Large Numbers

Corollary (Khinchin)

Let X1,X2, . . . be independent identically distributed random
variables with µ “ ErXks. Then the average of these random
variables satisfies

lim
nÑ8

Pr

«ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

k“1

Xk ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

ff

“ 0.

In other words, the sample average converges in probability towards
the expected value µ.
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Chernoff Bound
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Question

Consider now the sum of n independent bounded random
variables Xk ,

X “ X1 ` X2 ` ¨ ¨ ¨ ` Xn,

What kind of bound can we get in this case?
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Murphy’s Law

Anything that can go wrong, does.
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Murphy’s Law

Let A1,A2, . . . ,An denote mutually independent “bad” events.
Murphy’s law is the folk-wisdom that some bad event is likely to
happen.

Let Xk denote the indicator random variable for the event Ak . So

PrrXk “ 1s “ pk “ PrrAks.

Let X “
řn

k“1 Xk denote number of bad events happening.

How likely is it that no “bad” event will happen?
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Murphy’s Law

Proposition

PrrX “ 0s ď e´ErX s.

Proof.

PrrX “ 0s “ PrrA1 Y A2 Y ¨ ¨ ¨ Y Ans

“ PrrA1 X A2 X ¨ ¨ ¨ X Ans

“

n
ź

k“1

p1´ PrrAksq

ď

n
ź

k“1

e´PrrAk s “ e´
řn

k“1 PrrAk s “ e´
řn

k“1 ErXk s “ e´ErX s.
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Example

A production facility for micro processors boasts that the
probability that a transistor will be faulty is merely 10´5. You plan
to produce a VLSI circuit with 106 transistors. Thus, the probability
that you get a correctly working micro processor is less than

e´10
« 0.000045
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Observation

The main reason why we obtained an improvement by going from
Markov’s inequality to Chebychev’s inequality was that we
considered a function of the random variable X .

We were able to use the higher moment X 2 to improve the
accuracy in the bound.
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Bernstein’s Idea

If X is an arbitrary random variable, a and t real numbers with
t ą 0, then

PrrX ě as “ PrretX ě etas

ď
E retX s

eta

by Markov’s inequality. We can now choose t to minimize the
right-hand side.

The bounds depend on the random variables and on the value that
we choose for t. There are many different Chernoff bounds as a
result!
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Chernoff

Proposition

Let X1,X2, . . . ,Xn be independent random variables with values in
the interval r0, 1s. If X “ X1 ` X2 ` ¨ ¨ ¨ ` Xn and ErX s “ µ, then
for every a ą 0 we get the bounds

1 PrrX ě µ` as ď e´a
2{2n,

2 PrrX ď µ´ as ď e´a
2{2n.

The random variables do not need to be Bernoulli random variables,
but they need to be independent.
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Chernoff

Proof.

Let Yk “ Xk ´ ErXks for k in the range 1 ď k ď n.

Then the mean ErYks “ 0.

Set Y “ Y1 ` Y2 ` ¨ ¨ ¨ ` Yn. Then Y “ X ´ µ.

We can now apply the Bernstein’s idea. For some t ą 0, we get

PrrX ě µ` as “ PrrY ě as “ PrretY ě etas ď
EretY s

eta
.
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Chernoff
Proof. (Continued)

We have

PrrX ě µ` as ď
EretY s

eta
“

Ere
řn

k“1 tYk s

eta

“
E
“
śn

k“1 e
tYk

‰

eta
.

Since the random variables Yk are independent, it follows that the
random variables etYk are independent. Therefore, we have

PrrX ě µ` as ď
E
“
śn

k“1 e
tYk

‰

eta
“ e´at

n
ź

k“1

E
“

etYk
‰
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Chernoff
Proof. (Continued)

It remains to bound EretYk s.

The function f pyq “ ety is convex, since f 2pyq “ t2ety ą 0.

Let c ` dy be the line through the points p´1, e´tq and p1, etq. So
the coefficients c and d must satisfy

c “
et ` e´t

2
and d “

et ´ e´t

2
.

By convexity of f pyq, we have

ety “ f pyq ď c ` dy

for all y in r´1, 1s.
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Chernoff

Proof. (Continued)

Therefore, we can conclude that

EretYk s ď Erc ` dYks “ c ` d ErYks
loomoon

“0

“ c “
et ` e´t

2
.

Now we use the Taylor expansion of ex to simplify the bound:

ex “ 1` x `
x2

2!
`

x3

3!
` ¨ ¨ ¨
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Chernoff
Proof. (Continued)

EretYk s ď
et ` e´t

2

“
1

2

ˆ

1` t `
t2

2!
`

t3

3!
` ¨ ¨ ¨

˙

`
1

2

ˆ

1´ t `
t2

2!
´

t3

3!
`´ ¨ ¨ ¨

˙

“

ˆ

1`
t2

2!
`

t4

4!
`

t6

6!
` ¨ ¨ ¨

˙

ď

ˆ

1`
t2

2 ¨ 1!
`

t4

22 ¨ 2!
`

t6

23 ¨ 3!
` ¨ ¨ ¨

˙

as 2kk! ď p2kq!

“ et
2{2.
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Chernoff

Proof. (Continued)

PrrX ě µ` as ď e´at
n
ź

k“1

E
“

etYk
‰

ď e´at
n
ź

k“1

et
2{2
“ ent

2{2´at

The function hptq “ n t2

2 ´ at has a minimum at t0 “ a{n. So

PrrX ě µ` as ď enpa{nq
2´apa{nq

“ e´a
2{p2nq.
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Chernoff

(Continued.)

We can obtain the second Chernoff inequality as follows.

Set X 1 “ ´X . Then X ď µ´ a if and only if X 1 ě ´µ` a.
Therefore,

PrrX ď µ´ as ď e´a
2{p2nq.

This concludes the proof.
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Coin Toss

Suppose that we toss a fair coin 10,000 times. Let Xk “ 1 denote the event that
the k-th coin toss yields heads. Let X “ X1 ` X2 ` ¨ ¨ ¨ ` X10,000. Then

ErX s “ 5000, VarrX s “ npp1´ pq “ 2500.

1 Markov: PrrX ě 6000s ď 5000{6000 “ 5{6.
2 Chebychev:

PrrX ě 6000s “ PrrX ´ ErX s ě 1000s ď 2500{106 “ 1{400.
3 Chernoff:

PrrX ě 6000s “ PrrX ě ErX s ` 1000s ď e´10
6{p2¨10,000q “ e´50.
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Bernoulli Random Variables

Proposition

Let X “ X1 ` X2 ` ¨ ¨ ¨ ` Xn be the sum of n independent Bernoulli
random variables with PrrXk “ 1s “ pk . Let

µ “ ErX s “ p1 ` p2 ` ¨ ¨ ¨ ` pn.

Then

PrrX ě p1` δqµs ď eδµp1` δq´p1`δqµ,

PrrX ď p1´ δqµs ď eδµp1´ δq´p1´δqµ.

These are good bounds, but they are rarely used in this form. We will find more convenient,
but looser bounds, as a consequence.
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Proof.
For all t ą 1, we have

PrrX ě p1` δqµs “ PrrtX ě tp1`δqµs

ď
ErtX s

tp1`δqµ
by Markov’s inequality

“
ErtX1tX2 ¨ ¨ ¨ tXns

tp1`δqµ

“
ErtX1sErtX2s ¨ ¨ ¨ErtXns

tp1`δqµ
by independence

30 / 42



Proof. (Continued)

For all t ą 1, we have

PrrX ě p1` δqµs “

śn
k“1 ErtXk s

tp1`δqµ

“

śn
k“1pp1´ pkq ` pktq

tp1`δqµ

“

śn
k“1p1` pkpt ´ 1qq

tp1`δqµ

ď

śn
k“1 e

pkpt´1q

tp1`δqµ

“
ept´1q

řn
k“1 pk

tp1`δqµ
“

ept´1qµ

tp1`δqµ
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Proof. (Continued)

We showed that for all t ě 1, we have

PrrX ě p1` δqµs ď
ept´1qµ

tp1`δqµ
.

Substituting t “ 1` δ yields

PrrX ě p1` δqµs ď
eδµ

p1` δqp1`δqµ
,

which is our claim.

The proof of the second inequality is done in a similar way. 2
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Consequence

Corollary

PrrX ě p1` δqµs ď e´δ
2µ{3 for 0 ă δ ă 1,

PrrX ď p1´ δqµs ď e´δ
2µ{2 for 0 ă δ ă 1.
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Proof.
For the first inequality, it suffices to show that

eδp1` δq´p1`δq ď e´δ
2{3

for 0 ă δ ă 1. Taking logarithms on both sides yields the
equivalent inequality

f pδq :“ δ ´ p1` δq lnp1` δq `
δ2

3
ď 0

The latter inequality is not hard to show. Indeed,

f 1pδq “ 1´
1` δ

1` δ
´ lnp1` δq `

2

3
δ “ ´ lnp1` δq `

2

3
δ.
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Proof.

f 1pδq “ ´ lnp1` δq `
2

3
δ.

Since f 1pδq ď 0 for all δ in the range 0 ď δ ď 1, we can conclude
that f pδq is decreasing on 0 ď δ ď 1. Since f p0q “ 0, it follows that

f pδq “ δ ´ p1` δq lnp1` δq `
δ2

3
ď 0.

Therefore, we can conclude that

PrrX ě p1` δqµs ď e´δ
2µ{3 for 0 ă δ ă 1

holds. The proof of the second inequality is similar. 2
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Probability Amplification
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The Class BPP of Bounded-Error Probabilistic Polynomial Time DP

Recall that following definition.

Definition

Let ε be a constant in the range 0 ď ε ă 1{2.

The class BPP consists of all languages L such that there exists a
polynomial-time randomized algorithm A such that

1 x P L implies PrrApxq acceptss ě 1´ ε,

2 x R L implies PrrApxq rejectss ě 1´ ε.

It is customary to choose ε “ 1{3.
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Probability Amplification

Let A be a randomized algorithm that decides L P BPP.

Let us construct an algorithm A1 that runs A on an input x
precisely n times and returns the majority vote as an answer.

How likely is it that A1 errs?
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Probability Amplification

Let Xk denote the indicator random variable that the k-th run returns the correct
result. Let

X “
n
ÿ

k“1

Xk

denote the number of runs with correct answer. Then

ErX s ě
2

3
n.

Then A1 gives the wrong answer with probability

Pr

«

n
ÿ

k“1

Xk ď
n

2

ff

ď Pr

«

n
ÿ

k“1

Xk ď ErX s ´
n

6

ff

ď e´pn{6q
2{p2nq

“ e´n{72.

Therefore, if we choose n “ 72 lnp1{δq, then the algorithm errs with probability δ.
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Probability Amplification

One can reduce the constant 72 by using other versions of the
Chernoff bound.

However, the point is that the error δ of A1 can be made as small as
we please.
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Conclusion

There are many different Chernoff bounds. The recipe to bound the tail of
random variable X is as follows. If a and t real numbers with t ą 0, then

PrrX ě as “ PrretX ě etas

ď
E retX s

eta

by Markov’s inequality. We can now choose t to minimize the right-hand side.

The right-hand side is often bounded in various ways so that the bound is easier
to use. All the resulting bounds are referred to as Chernoff bounds. You can find
somewhat tighter bounds and variations in our textbook.
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