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The Problem

Alice wants to send the state of a quantum bit to Bob. 

We assume that they share a pair of entangled quantum bits in 
the state (|00>+|11>)/√2.

How can they do it if classical communication is allowed? 
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The Quantum Circuit

Let’s assume that Alice wants to teleport a quantum bit in the state    
a|0> + b|1> to Bob and that they share a pair of entangled quantum bits 
such that the system is in the state: (a|0>+b|1>) ⊗ (|00>+|11>)/√2. We 
claim that the following quantum circuit can solve the problem:         
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might not be aware of that, and the least two qubits are in the state (3.1).

Therefore, the system is initially in the state

(a|0�+ b|1�)⊗ (
1√
2
|00�+ 1√

2
|11�). (3.2)

We assume that Alice and Bob are located far apart. They can apply op-

erations locally on the qubits in their possession and communicate over the

phone. The teleportation is surprisingly simple. Alice applies a controlled-not

operation Λ2,1(X), and a Hadamard gate to the most significant bit. Then

she measures her quantum bits, and tells Bob what kind of gate he should

apply to his quantum bit.

Alice

Alice

Bob

H

Apply

corrections

The controlled-not gate Λ2,1(X) transforms the state (3.2) to

a|0� ⊗ (
1√
2
|00�+ 1√

2
|11�) + b|1� ⊗ (

1√
2
|10�+ 1√

2
|01�).

Applying the Hadamard gate on the most significant qubit yields the state

a(
1√
2
|0�+ 1√

2
|1�)⊗ (

1√
2
|00�+ 1√

2
|11�)

+ b(
1√
2
|0� − 1√

2
|1�)⊗ (

1√
2
|10�+ 1√

2
|01�).

The bilinear relations of the tensor product allow this state to be rewritten as

follows:

a(
1
2 |000�+

1
2 |011�+

1
2 |100�+

1
2 |111�)

+b(
1
2 |001�+

1
2 |010� −

1
2 |101� −

1
2 |110�).

We collect the terms with the same two most significant qubits, and use the

bilinear relations of the tensor product to express this state in yet another,

but still equivalent, form:

1

2

�
|00� ⊗ (a|0�+ b|1�) + |01� ⊗ (a|1�+ b|0�)

+|10� ⊗ (a|0� − b|1�) + |11� ⊗ (a|1� − b|0�)
�
.
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Applying the controlled not yields 

Initial state: 
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State Evolution (2)
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Rewriting the State
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Measurement and Correction
§1. TELEPORTATION 27

Alice finally measures the two most significant qubits. The different measure-
ment results and corresponding post-measurement states are shown in the
following table:

Observation Resulting State Alice tells Bob
00 |00� ⊗ (a|0�+ b|1�) to do nothing
01 |01� ⊗ (a|1�+ b|0�) to apply X
10 |10� ⊗ (a|0� − b|1�) to apply Z
11 |11� ⊗ (a|1� − b|0�) to apply ZX

We note that the resulting state after the measurement can be transformed in
each case into a state of the form |x2x1� ⊗ (a|0� + b|1�), with xi ∈ {0, 1}, by
applying the single-qubit gate recommended by Alice. We have accomplished
our goal: Alice has successfully communicated the state a|0�+ b|1� to Bob.

Entanglement. Let Cn and Cm be state spaces of two quantum systems.
A state of Cn ⊗Cm that can be written in the form v ⊗ w, for some v ∈ Cn

and w ∈ Cm, is called decomposable. If a state is not decomposable, then
it is called an entangled state. Teleportation and many other protocols in
quantum computing use entanglement as a resource.

Exercise 3.1 Show that the state (3.1) is an entangled state.

There exists a simple criterion that allows us to decide whether an arbitrary
state in C2⊗C2 is entangled or not. We have to check only a single invariant
of the state to decide this question.

Exercise 3.2 Prove that the state |ψ� = α|00� + β|01� + γ|10� + δ|11� is

decomposable if and only if the coefficients satisfy αδ − βγ = 0.

The state (3.1) is called an Einstein-Podolsky-Rosen state, or EPR
state for short. This state received considerable attention after the famous
critique on quantum mechanics by Einstein, Podolsky, and Rosen; particularly
in Bohm’s interpretation. However, there is nothing sacred about this state,
and it is, of course, possible to use other entangled states for teleportation.

Exercise 3.3 Suppose that Alice and Bob share the state
1√
2
|00� + eiθ√

2
|11�,

θ ∈ R. Assume that Alice wants to use her teleport circuit to communicate

an unknown state a|0� + b|1� of some quantum bit to Bob. Assuming that

they both know θ, what kind of operations does Bob have to apply when he

learns Alice’s measurement results? Derive all steps carefully.
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measuring the two most significant quantum bits yields
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