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The Problem

Given: a Boolean function f: {0,1}" -> {0,1}" such that there exists
an s in {0,1}" so that for all x, y in {0,1}" the following property
holds:

f(x)=f(y) if and only if x=y or x®s=y
where @ is the bitwise xor operator (=addition mod 2).

Goal: Find s
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Let n=3.

The function f(x) is a 2-to-1

function.

We have s=101

Notice: You might have to
evaluate as many as 2"'+1
different arguments fo find s.

Example

F AR e
000 11
001 000
010 110
ol1 101
100 000
101 111
110 101
111 110




Quantum Algorithm

The quantum part is particularly
simple:

All 2n qubits are initialized to [0>.
MSBs are input, and LSBs are output

Apply Hadamard gate, then By,
followed by Hadamard gates and
measurement.
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Quantum Algorithm

Initial state: |0™) ® |0™)
After Hadamard gates are applied
to n most significant bits, we get
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Quantum Algorithm
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Applying B yields
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Quantum Algorithm
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Applymg Hadamard gates yields _m
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Measurement

The state before measurement is given by
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If s =0, then f(x) is injective, hence bijective.

Then the probability to observe y is given by
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If s # 0, then for each z in ran(f), there exist two
distinct arguments x, and x/ such that
flz,) =2z = f(zxand z,$s = = .. The probability
to observe y is given by
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Conclusions

For all s in {0,1}", the observed strings y are uniformly distributed
among 1y |ls-y=0}.

Strategy: Repeat the quantum algorithm n-1 fimes to obtain
elements Y = { yi, ..., Yna }.

If the vectors inY are linearly independent, then there exists
precisely one nonzero s’ in {0,1}" such that s’ - yx = O for all k.

If f(s')=f(0), then s=s’; otherwise s=0.
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