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Preface

Quantum computing provides a fresh perspective on information processing.
Some quantum algorithms have the promise to provide an exponential speed-
up over classical deterministic and randomized algorithms. This explains
the massive worldwide efforts to build a viable quantum computer. How-
ever, this is certainly not the only motivation to study the subject matter.
Quantum computing has serious repercussions on classical computing. For
instance, some efficient algorithms for hard problems have been obtained by
“de-quantizing” quantum algorithms.

These lecture notes provide a rapid introduction to the main ideas behind
quantum algorithms. The subject matter is not difficult, but dramatically
different from its classical counterpart. We provide numerous simple exercises
that are designed to ease the transition into the quantum realm. Solving the
exercises will help the reader to gain an active working knowledge.

Our approach is largely based on the quantum circuit model, which is
easy to understand. This model abstracts from the nature and the dynamics
of the physical system realizing the quantum computer. The advantage of this
approach is that within an extremely short period of time it will be possible
to cover interesting algorithms.

The course requires some background in linear algebra. The books Linear
Algebra by Serge Lang and Linear Algebra Done Right by Sheldon Axler are
excellent sources to review such material.

Please note that this is a preliminary draft. The lecture notes are incom-
plete, and all parts are subject to change. The material should be read in
conjuction with the book Quantum Computation and Quantum Information
by Nielsen and Chuang. You can consult the books Classical and Quan-
tum Computation by Kitaev, Shen, and Vyalyi, and Quantum Computing by
Hirvensalo for further information. Both are accessible for readers with a
background in Computer Science. The most important additional resource,
however, is the quantum physics archive www.arxiv.org, where you can find
recent preprints.
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iv PREFACE

If you read these notes, then you accept the following contract: You agree
to communicate all errors to me. If you do not want to burden yourself with
this task, then do not read any further.

Andreas Klappenecker
College Station, Texas



Chapter 1

Prolegomena

The predominant computational models of the last fifty years are all based
on the notion of a bit, a representation of two alternatives, 0 or 1. The
technological convenience to store and transmit information in such a form is
evident. From that point of view, it might be surprising that the very concept
of a bit is challenged by a contemporary computational theory.

The basic unit of information in the quantum computation model is a
quantum bit. We motivate and illustrate this concept by a simple example,
before developing the theory in a more axiomatic way. Hopefully, it will
become apparent that the notion of a quantum bit is as natural as the notion
of a bit.

We begin our journey by considering a source of monochromatic light. It
is possible to polarize light such that it has an electric field which oscillates
horizontally

or vertically

Suppose that we dim our monochromatic light source so that it emits a single
photon at a time. The photon has the polarization property as well; hence,
we can encode a classical bit by polarizing the photon either horizontally or
vertically. We denote the two alternatives by |↔〉 and | l 〉 instead of 0 and 1,
for reasons that will become apparent shortly.

1



2 CHAPTER 1. PROLEGOMENA

We can distinguish the two different states by sending the photon through
a calcite crystal. A horizontally polarized photon will pass straight through,
whereas a vertically polarized photon will be deflected:

|l 〉

|↔〉
|l 〉
|↔〉

You can find such calcite crystrals for example in museum shops. The above
effect can be verified by shining with a laser pointer through such crystals.

Rotations. There is no particular reason to single out horizontally and ver-
tically polarized photons. For instance, we could have rotated the polarization
planes by an angle θ. A photon can encode a bit just as well using the two
rotated polarization directions.

An interesting aspect emerges by comparing the two representations. The
rotated basis can be expressed in terms of the horizontal and vertical polarized
states, |↔〉 and | l 〉, as follows:

|0θ〉 = cos θ|↔〉+ sin θ| l 〉,
|1θ〉 = − sin θ|↔〉+ cos θ| l 〉.

The geometrical meaning of these formulas become immediately apparent if we
associate the horizontally polarized state |↔〉 with the column vector (1, 0)t

and the vertically polarized state | l 〉 with (0, 1)t. We do not want to get
into the interesting details of the underlying physics. For the moment, we will
content ourselves by discussing a single consequence of the above formula that
will lead us to an interesting application.

Suppose that we repeat the previous experiment with the calcite crystal,
but this time we send a beam of photons that are all in the state |0θ〉. Assume
that the calcite crystal is still aligned such that horizontally and vertically
polarized photons can be perfectly distinguished. The first observation is that
the photons emerging from the crystal all have either the polarization |↔〉 or
| l 〉. Even more interesting is the fact that the emerging photon will be in the
state |↔〉 with probability cos2 θ, and in the state | l 〉 with probability sin2 θ.

Exercise 1.1 What angle θ do you have to choose such that the calcite crystal
realizes a fair coin flip when presented with a photon in the state |0θ〉? Assume
that the axis of the crystal is aligned such that it discriminates perfectly
between |↔〉 and | l 〉.
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Polarization States. We can express more generally all other forms of
polarization in terms of a linear combination a|↔〉 + b| l 〉 of the horizontal
and vertical polarization states, where a and b are complex numbers that
satisfy |a|2 + |b|2 = 1.

There is nothing strange about the fact that we can have complex numbers
as coefficients. For instance, a right-hand circularly polarized photon is a
photon in the state

1√
2

(|↔〉+ i | l 〉).

This is the quantum analogue of right-hand circularly polarized light, which
is the superposition of a horizontally oscillating electric field and a vertically
oscillating electric field that are 90◦ out of phase. The coefficient i accounts
for this difference in phase.

Exercise 1.2 Explain why the term circularly polarized light is appropriate.
Which polarization state of the photon would correspond to left-hand circular
polarization?

The polarization of a photon is an instance of a quantum bit, as you might
have guessed already. A quantum bit has two clearly distinguishable states,
in our case |↔〉 and | l 〉. The quantum bit can exist in superpositions of
these two states, such as a|↔〉 + b| l 〉. This is just a strange way to express
a two-dimensional nonzero vector (a, b)t ∈ C2. We can assure the reader that
the notation will turn out to be immensely convenient.

It is not possible to extract the coefficient a and b of a superposition state
a|↔〉 + b| l 〉. If we want to learn something about the state, then we can
send the photon, for instance, through the calcite crystal. If the crystal is
aligned as before, then the outcome will be |↔〉 with probability |a|2, and | l 〉
with probability |b|2. The superposition collapses when we perform such a
measurement. We can take advantage of this fact to realize a protocol for the
secure distribution of keys.

Key Distribution. Establishing a common secret between two parties is
an important cryptographical primitive. If Alice wants to send a confidential
message to Bob over a public channel, then they can use encryption to prevent
an eavesdropper from reading the message. If they use some standard block
cipher such as AES or 3DES, then they need to have a common key. Public
key cryptosystems, such as RSA, provide methods that can establish such a
common secret.
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There is a problem, however. An eavesdropper can silently copy all mes-
sages used to establish the key, and the encrypted message. The eavesdropper
might not be able to take immediate advantage of the copied material. Never-
theless, she might be able to break the system later, and decipher the message.

In 1984, Bennett and Brassard introduced a protocol that allows to ex-
change a key securely. The protocol takes advantage of quantum mechanics
to ensure that eavesdropping during the key exchange phase will not go un-
noticed. This is an example of a property that cannot be guaranteed by any
protocol that is based on classical physics.

Alice uses four different polarization states of photons in this protocol.
The horizontally and vertically polarized states, |↔〉 and | l 〉, and a basis
that is obtained by a 45◦ degree rotation,

|↗↙〉 =
1√
2
|↔〉+

1√
2
| l 〉 and |↖↘〉 =

1√
2
|↔〉 − 1√

2
| l 〉.

A classical bit can be encoded either by the alternatives � = {|↔〉, | l 〉} or
by � = {|↗↙〉, |↖↘〉}. Alice and Bob agree on the following representation:

basis encoding

� 0 ∼= |↔〉, 1 ∼= | l 〉
� 0 ∼= |↗↙〉, 1 ∼= |↖↘〉

Bob can use a calcite crystal to measure a photon sent by Alice. He
selects between two different alignments of the crystal. The alignment �
allows Bob to perfectly discriminate between |↔〉and | l 〉, and the alignment
� to perfectly discriminate between |↗↙〉 and |↖↘〉. The second alignment is
obtained from the first by rotating the calcite crystal by 45◦. The following
observation is crucial to the protocol:

Observation If Alice sends a bit choosing one encoding, but Bob has aligned
his crystal to measure the other, then he will decode 0 with probability 1/2
and 1 with probability 1/2.

Protocol BB84. The goal of this protocol is to establish a common secret
of n bits between Alice and Bob.

1) Alice chooses a data string s of (4 + δ)n bits that are independently
selected uniformly at random.

2) Alice chooses a string b of (4 + δ)n symbols over the alphabet {�,�}
that are independently selected uniformly at random.
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3) For all k ∈ {1, . . . , (4 + δ)n}, Alice sends the data bit sk encoded in the
basis bk to Bob.

4) Bob selects for each incoming photon a basis from the set {�,�}, inde-
pendently and uniformly at random, and measures the photon in that
basis. He records the basis that he has chosen and the measurement
outcome.

5) Alice publicly announces the string b.

6) Alice and Bob discard all bits from s where Bob measured in the wrong
basis. With high probability, there are at least 2n bits left. They repeat
the protocol if that is not the case. They keep 2n bits.

7) Alice selects n bits from this string and announces the position and
value of these bits. Bob compares the value of these n check bits with
the values of the bits that he has measured. If more than an acceptable
number disagree, then they abort the protocol.

8) Alice and Bob extract from the remaining n common bits a common key
using information reconciliation and privacy amplification methods.

The purpose of the last step is to take into account that the state of some
photons might have been disturbed by some imperfection of the communica-
tion channel. We will ignore the technical details of this last step for the time
being. The following example illustrates the protocol:

s 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0
b � � � � � � � � � � � � � � � �

polarization |↗↙〉| l 〉|↖↘〉|↗↙〉|↔〉|↔〉| l 〉|↖↘〉|↗↙〉| l 〉|↔〉|↗↙〉| l 〉|↖↘〉|↖↘〉|↔〉
Bob’s basis � � � � � � � � � � � � � � � �
Detected bit 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0
Correct basis? X X X X X X X X
Check bits 0 1 1 1
⇒ no eavesdropper
Common secret 1 1 0 1

What makes this protocol secure? All operations in quantum mechanics
are linear. One consequence of this fact is that one cannot copy an unknown
quantum state without disturbing the state. So an eavesdropper will not go
unnoticed when she is trying to copy the bits. There is of course much more to
say about this protocol, but we do not want to get into too many details in this
introductory chapter. Devices realizing this protocol are already commercially
available from a company in the USA and from a company in Europe.
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Quo Vadis? The polarization state of a photon is just one potential way
to store information. Other quantum mechanical systems can serve the same
purpose. In fact, a staggering number of different quantum systems have
been proposed for quantum information processing. Each system has some
advantages and some disadvantages. We will not be concerned with the details
of such proposals. We focus instead on properties that almost all of these
proposals try to accomplish.

The key distribution protocol by Bennett and Brassard exemplified a few
aspects of quantum information processing, but not all of them, not even close!
The most interesting aspects emerge from the combination of several quantum
systems. We will discuss operations that allow to manipulate such quantum
memories. And we show how to harness various quantum features to obtain
beautiful algorithms.



Chapter 2

Quantum Circuits

Quantum computing can be based on various different computational models.
The most accessible one is the quantum circuit model, which specifies a se-
quence of operations that manipulate the state of the quantum computer at
discrete time steps. The basic rules of this model are surprisingly simple. This
chapter introduces the basic properties of quantum states, quantum gates, and
measurements.

§1 Quantum States

A bit has two distinguishable states, denoted by 0 and 1. A classical computer
manipulates a set of bits, which form the memory of the computer. The
memory of a quantum computer is based in a similar way on the notion of a
quantum bit, qubit for short. A qubit has two clearly distinguishable states,
denoted by |0〉 and |1〉. The possible states of a qubit are not exhausted by
these two possibilities. In general, the state of a qubit is of the form a|0〉+b|1〉,
where a and b are complex numbers satisfying |a|2 + |b|2 = 1.

The states |0〉 and |1〉 should be understood as basis vectors of a complex
two-dimensional vector space. We can associate with these states the basis
vectors

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
. (2.1)

The state a|0〉 + b|1〉 is a linear combination of these two basis vectors, and
is represented by the vector (a, b)t. The operations of the quantum computer
manipulate these vectors by linear transformations or by measurements.

The value of a quantum bit is always 0 or 1, never anything else. If a qubit
is in the state a|0〉 + b|1〉, then this means that the value 0 is observed with

7



8 CHAPTER 2. QUANTUM CIRCUITS

probability |a|2, and the value 1 with probability |b|2. A measurement in the
computational basis returns the value 0 or 1 according to this rule, and sets
the qubit to the state |0〉 or |1〉, respectively. A consequence is that if the
measurement is repeated, then it will return the same value.

It is easy to construct a state that yields a fair coin-flip. Choose the state
1√
2
|0〉 + 1√

2
|1〉. Then 0 and 1 are both observed with probability (1/

√
2)2 =

1/2. The resulting state after the measurement is |0〉, if the measurement
result was 0, and |1〉 otherwise.

Exercise 2.1 Assume that a qubit is in the state 1√
10
|0〉 + 3√

10
|1〉. What is

the probability to observe 0, or 1, respectively?

Exercise 2.2 Assume that a qubit is in the state i√
2
|0〉− 1√

2
|1〉. What is the

probability to observe 0, or 1, respectively?

A memory consisting of n quantum bits has 2n basis states, which are de-
noted by |0 · · · 00〉, |0 · · · 01〉, |0 · · · 10〉, . . . , |1 · · · 11〉. The state of the memory
is a linear combination of these basis states. Denote by F2 the finite field with
two elements 0 and 1. An arbitrary state of the memory is of the form∑

k∈Fn2

ak|k〉, with
∑
|ak|2 = 1.

If we read out the memory by a measurement in the computational basis, then
we will observe the result k, a string of n bits, with probability |ak|2. The scalar
coefficients ak are called probability amplitudes or, simply, amplitudes.

Exercise 2.3 What is the probability of observing 11, if the memory is in
the state 1

2 |00〉 − 1
2 |10〉+ i√

2
|11〉? In what state is the memory once we have

observed 11?

Exercise 2.4 Describe all possible states of a system of two quantum bits
such that a measurement in the computational basis yields 00 with probability
1/2, and the results 01 and 11 both with probability 1/4.

Any quantum system with at least two different basis states can basically
store a quantum bit, and finding appropriate storage media for a quantum
computer is a very active area of current research. The linear combination
of basis states reflects the superposition principle of quantum mechanics. It
should be noted that only the measurement process introduces randomized
behavior in quantum algorithms. All other operations of a quantum computer
are completely deterministic.
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§2 A Single Quantum Bit

The operations of a quantum computer allow reading, writing, or manipulat-
ing the content of the memory, and therefore serve the same purpose as the
operations of a classical computer. The main distinction is that the opera-
tions of a quantum computer are formulated to be conformant with the laws
of quantum mechanics. We explain in this section the basic operations on a
single quantum bit, and introduce some convenient notations.

The input operation of a quantum computer can prepare the memory in
any basis state. As a result, each quantum bit is either in the state |0〉 or
in the state |1〉, but not in a superposition of these basis states. The actual
computation is done by applying simple operations, called quantum gates,
which allow to manipulate the content of the memory. The result of the
computation is determined by measurement operations.

If the memory consists of a single quantum bit, then the operations are
particularly easy to understand. We recall some mathematical vocabulary to
ease our discussion. If x = (xm−1, . . . , x0)

t and y = (ym−1, . . . , y0)
t are vectors

in Cm, then

〈x|y〉 = xm−1ym−1 + · · ·+ x0y0

defines a hermitian product. We follow the convention that hermitian prod-
ucts are anti-linear in the first argument, and linear in the second.

Exercise 2.5 Show that the hermitian product is positive definite, that is,
〈x|x〉 ≥ 0 for all x ∈ Cm, and 〈x|x〉 > 0 if x 6= 0.

If x ∈ Cm, then the norm of x is defined by ‖x‖ =
√
〈x|x〉. A vector x

with norm ‖x‖ = 1 is called a unit vector. Let U : Cm → Cm be a linear
map. If 〈Ux|Uy 〉 = 〈x|y〉 holds for all x, y ∈ Cm, then U is called unitary.

Exercise 2.6 Show that a complex m×m matrix U is unitary if and only if
U−1 = U

t
; that is, the inverse of a unitary matrix is obtained by transposing

the matrix and conjugating the matrix entries.

Exercise 2.7 A quantum state is a unit vector. Show that if a linear map M
maps each unit vector x ∈ Cm to a unit vector Mx, then M has to be unitary.
This property explains the relevance of unitary maps in quantum computing.

Exercise 2.8 Let {u0, . . . , um−1} and {v0, . . . , vm−1} be orthonormal bases
of Cm. Let U be a linear map such that vi = Uui for i = 0, . . . ,m− 1. Show
that U is unitary.
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We have now the terminology to describe the operations on a single quan-
tum bit. A quantum gate changes the state of a single qubit by applying
an arbitary unitary map U . We use the following graphical notation for such
a quantum gate:

U

The horizontal line represents the evolution of the quantum bit over time.
The time flow is from left to right. The box represents a quantum gate, which
applies a unitary map U to the state of the qubit.

The quantum gate is unitary, hence, in particular, linear. This means that
the action of the gate is completely determined by its behavior on the base
states |0〉 and |1〉. Suppose that the quantum gate U changes the input state
|0〉 to m00|0〉+m10|1〉 and the input |1〉 to m01|0〉+m11|1〉. If the input is a
linear combination a|0〉+ b|1〉, then the gate U will change this state to

a (m00|0〉+m10|1〉) + b (m01|0〉+m11|1〉)
= (am00 + bm01)|0〉+ (am10 + bm11)|1〉.

The result of this computation can be expressed in the standard basis (2.1)
by the following matrix vector product:(

am00 + bm01

am10 + bm11

)
=

(
m00 m01

m10 m11

)(
a
b

)
.

The most familiar example is given by a not gate, which changes |0〉 to |1〉
and vice versa. This quantum gate can be described by the unitary matrix

X =

(
0 1
1 0

)
.

If we apply this quantum gate twice, then we recover the input. Graphically,
we obtain the rule

X X =

Another operation on one quantum bit is given by the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
.

This operation has the following effect:

H|0〉 =
1√
2
|0〉+

1√
2
|1〉 and H|1〉 =

1√
2
|0〉 − 1√

2
|1〉.
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Exercise 2.9 Calculate H(H|0〉) and H(H|1〉) by evaluating the expressions
in parentheses. Use linearity to obtain the result. Compare your result to the
matrix H2.

The product of two unitary matrices is a unitary matrix. Therefore, in-
stead of applying gate A and then gate B, we can apply a single quantum
gate BA. This way we obtain the rule

A B = BA

The order of the matrices changes because the time flow in a quantum circuit
is from left to right. However, the matrices act on column vectors; hence,
applying BA means that A is applied first.

Exercise 2.10 Simplify the circuit, and determine a single unitary matrix Z
that is the result of applying the Hadamard gate H, then the not gate X,
then again the Hadamard gate H:

H X H = Z

Exercise 2.11 Find a unitary 2× 2 matrix R such that

R R = X

In other words, R should satisfy R2 = X.

Numerous other unitary matrices are used in quantum algorithms. The
rotation matrices

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

and the Pauli matrices σx, σy, and σz are popular choices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Exercise 2.12 Show that the product of any two Pauli matrices is – up to
a multiplication by a scalar – either a Pauli matrix or the identity matrix.
Memorize the definition of the Pauli matrices.
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An output is obtained by measuring the state of the quantum bit. The
measurement operation of a quantum bit in the state a|0〉 + b|1〉 yields
output 0 with probability |a|2, and output 1 with probability |b|2. The state
is, in general, changed by the measurement operation. If 0 is observed, then
the state is set to |0〉, and if 1 is observed, then the state is set to |1〉. We
depict a measurement of the quantum bit by a meter sign:

The operations obtained so far allow us to derive a quantum circuit simu-
lating an unbiased coin flip. This circuit produces output 0 with probability
1/2, and output 1 with probability 1/2. We initialize the quantum bit with
the state |0〉, then apply the Hadamard gate, and measure the result:

|0〉 H

The Hadamard gate changes the state to 1√
2
|0〉+ 1√

2
|1〉; hence, the measure-

ment produces the output with the desired probability.

Exercise 2.13 Design a quantum circuit that simulates a biased coin flip.
The circuit should produce output 0 with probability 1/3, and output 1 with
probability 2/3.

§3 Quantum Gates

We need operations that enable the interaction between different quantum
bits. The xor gate or controlled-not gate acts on two distinct quan-
tum bits. Suppose that the memory contains two quantum bits, then the
controlled-not gate operates on the basis states of the system as follows:

|00〉 7→ |00〉,
|01〉 7→ |01〉,
|10〉 7→ |11〉,
|11〉 7→ |10〉.

If we extend this operation linearly, then the quantum state

a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉

will be mapped by this controlled-not gate to

a00|00〉+ a01|01〉+ a10|11〉+ a11|10〉.
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Exercise 2.14 The xor gate is a unitary map. Determine the associated
unitary matrix with respect to the computational basis |00〉, |01〉, |10〉, |11〉.
Choose the basis vectors in this order.

Exercise 2.15 Suppose that a controlled-not gate is applied to the state
1
2 |00〉+ 1

2 |10〉+ 1√
2
|11〉. What is the resulting state?

Controlled-not gates can be generalized to an arbitrary number n ≥ 2 of
quantum bits. A controlled-not gate with control bit at position i and
target bit at position j 6= i is a unitary map, which is determined by

|xn−1 · · ·x1x0〉 7→ |yn−1 · · · y1y0〉,

where xk and yk are elements of {0, 1}, such that xk = yk for all k 6= j, and
the target bit yj = xi ⊕ xj is the result of adding xi to xj modulo 2. We
denote this controlled-not gate by Λi,j(X).

A controlled-not gate Λ1,0(X) acting on two quantum bits is depicted in
the graphical notation for quantum gates by

The two horizontal lines represent the two quantum bits. The most significant
bit (the bit at position 1) is shown on top, and the least significant bit (the
bit at position 0) is shown at the bottom. The black dot • depicts the control
bit of the quantum gate, and the crossed circle ⊕ depicts the target bit.

Assume that we have three quantum bits, which are initially in the state

1

2
|001〉+

1√
2
|110〉+

1

2
|111〉.

Suppose that this state is processed by the quantum circuit

The time flow is from left to right. The first controlled-not gate Λ2,1(X)
negates the quantum bit in the middle, if the most significant bit is set. The
resulting intermediate state after applying the first controlled-not gate is

1

2
|001〉+

1√
2
|100〉+

1

2
|101〉.
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The second controlled-not gate Λ0,2(X) is controlled by the least significant
bit, and the target bit is the most significant bit. The intermediate state is
changed by this controlled-not gate to

1

2
|101〉+

1√
2
|100〉+

1

2
|001〉.

Exercise 2.16 Design a quantum circuit consisting of controlled-not gates,
which realizes the unitary map

|00〉 7→ |00〉, |01〉 7→ |10〉, |10〉 7→ |01〉, |11〉 7→ |11〉.

We defer the discussion of further multi-qubit operation, and focus in-
stead on operations which act locally on a single quantum bit. It turns out
that single-qubit operations and controlled-not gates allow to fully program a
quantum computer. Therefore, all other operations can be expressed in terms
of these elementary operations. We make a digression and explain tensor prod-
ucts, which provide the proper framework to understand the data structure
of the memory.

Let V and W be finite-dimensional complex vector spaces. The tensor
product V ⊗W is a vector space, which is spanned by linear combinations of
elements v ⊗ w such that v ∈ V and w ∈ W . The product v ⊗ w is defined
such that it satisfies the additive relations

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w (2.2)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2 (2.3)

and the balancing relations

c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw) (2.4)

for each v, v1, v2 in V , each w,w1, w2 in W , and each complex number c.
We can formally construct this vector space V ⊗ W as follows. Form

the vector space A of all linear combinations of elements (v, w) with v ∈ V
and w ∈ W . Consider the subspace B of A, which consists of all linear
combinations of the elements

(v1 + v2, w)− (v1, w)− (v2, w),
(v, w1 + w2)− (v, w1)− (v, w2),

c(v, w)− (cv, w), c(v, w)− (v, cw),

for v, v1, v2 ∈ V , w,w1, w2 ∈ W , and c ∈ C. We define the tensor product
V ⊗W to be the quotient space A/B. The image of the element (v, w) of A
in V ⊗W is denoted by v ⊗ w.
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We emphasize that not every element of V ⊗W is of the form v ⊗ w for
some v ∈ V and w ∈W . However, every element of V ⊗W can be expressed
as a sum

∑
i,j vi ⊗ wj of such tensor products, with vi ∈ V and wj ∈W .

Exercise 2.17 Give an example of a vector in C2⊗C2 that cannot be written
in the form v ⊗ w with v, w ∈ C2. Prove your result.

It might be helpful to re-iterate the construction. We started with two
finite-dimensional vector spaces V and W . We constructed a giant vector
space A with basis {(v, w) | v ∈ V,w ∈ W}. The generators of B were chosen
such that the quotient space V ⊗W = A/B satisfies the relations (2.2)–(2.4).
It is easy to see that V ⊗W = A/B is a finite-dimensional vector space, even
though A and B are infinite-dimensional.

Exercise 2.18 Let V and W be complex finite-dimensional vector spaces.
Let {e1, . . . , em} be a basis of V and {f1, . . . , fn} be a basis of W . Show that
{ei ⊗ fj | 0 ≤ i < m, 0 ≤ j < n} generates V ⊗W .

The exercise shows that dim(V ⊗W ) ≤ dim(V ) dim(W ). In fact, it is possi-
ble to show that equality holds, which proves that the generating set in the
previous exercise is a basis of V ⊗W .

Let V and W be as in Exercise 2.18. Suppose that A is a linear map on V ,
and B is a linear map on W . Let A ⊗ B denote the linear map on V ⊗W ,
which is determined by

(A⊗B)(ei ⊗ fj) = Aei ⊗Bfj .

This uniquely determines the values of A ⊗ B on other elements of V ⊗W
because the elements ei ⊗ fj are a basis.

Exercise 2.19 Let A and B be the matrices

A =

(
a00 a01
a10 a11

)
, B =

(
b00 b01
b10 b11

)
representing linear maps with respect to the basis {e0, e1}. Determine the
matrix A⊗B with respect to the basis {e0 ⊗ e0, e0 ⊗ e1, e1 ⊗ e0, e1 ⊗ e1}.

The tensor product plays a significant role in quantum computing. Recall
that the state space of a single quantum bit is given by C2. In quantum
mechanics, the state space of a joint quantum system is described by the
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tensor product of the state spaces of its parts. Consequently, a compound
system of n quantum bits has the state space

C2 ⊗ · · · ⊗C2 (n factors).

This is a 2n-dimensional complex vector space, hence isomorphic to C2n . The
isomorphism is explicitly given by the linear map

|xn−1〉 ⊗ · · · ⊗ |x1〉 ⊗ |x0〉 7−→ |xn−1 · · ·x1x0〉,

where xi ∈ {0, 1}, 0 ≤ i < n. We will use this isomorphism freely, and switch
from one representation to the other, whichever is more convenient. We will
silently identify the two notations and write |00〉 = |0〉 ⊗ |0〉, etc.

Exercise 2.20 By convention, the basis vectors associated with the basis |0〉
and |1〉 of C2 are

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
.

Derive the vectors of C4 ∼= C2 ⊗C2 associated with

|00〉 = |0〉 ⊗ |0〉, |01〉 = |0〉 ⊗ |1〉, |10〉 = |1〉 ⊗ |0〉, |11〉 = |1〉 ⊗ |1〉.

Exercise 2.21 Which vector is associated with (a0|0〉+a1|1〉)⊗(b0|0〉+b1|1〉),
assuming the above convention for the basis vectors?

Suppose we have a memory with n quantum bits. Let U be a unitary
2 × 2 matrix. We define a single-qubit gate U acting on the quantum bit
at position i to be the unitary map 12n−i−1 ⊗ U ⊗ 12i . Alternatively, one can
describe the action of the gate by

|xn−1〉 ⊗ · · · ⊗ |xi〉 ⊗ · · · ⊗ |x0〉 7→ |xn−1〉 ⊗ · · · ⊗ U |xi〉 ⊗ · · · ⊗ |x0〉,

where xi ∈ {0, 1}, 0 ≤ i < n. All tensor components remain unchanged with
the exception of |xi〉, which is replaced by U |xi〉.

Let us illustate this definition in the case of two quantum bits. Suppose
that we apply the Hadamard gate H on the least significant bit, that is, the
gate acts on the quantum bit at position i = 0. The unitary map associated
with this gate is represented by the matrix

12 ⊗H ⊗ 11 = 12 ⊗H =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 . (2.5)
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This matrix is the tensor product of the identity matrix 12 and the Hadamard
matrix H.

The alternative description is even easier to grasp. Indeed, the state |00〉 =
|0〉 ⊗ |0〉 is mapped to

|0〉 ⊗H|0〉 = |0〉 ⊗ (
1√
2
|0〉+

1√
2
|1〉) =

1√
2
|0〉 ⊗ |0〉+

1√
2
|0〉 ⊗ |1〉.

Note that this vector corresponds to the first column of the matrix (2.5). The
state |01〉 = |0〉 ⊗ |1〉 is mapped to

|0〉 ⊗H|1〉 = |0〉 ⊗ (
1√
2
|0〉 − 1√

2
|1〉) =

1√
2
|0〉 ⊗ |0〉 − 1√

2
|0〉 ⊗ |1〉,

and corresponds to the second column of the matrix (2.5). The result of the
input |10〉 and |11〉 is obtained in a similar way, and we leave these two cases
to the reader.

Exercise 2.22 Suppose that the memory consists of two qubits. Determine
the matrix corresponding to the Hadamard gate acting on the most significant
qubit.

The graphical notation for single-qubit gates is similar to the single quan-
tum bit case. A single-qubit gate U acting on the least significant bit in a
system of two quantum bits is depicted by

U

Exercise 2.23 Determine the action of the circuit

H

on the input |00〉, |01〉, |10〉, |11〉. Explain why the resulting states form an
orthonormal basis.
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§4 Measurements

We need to have a way to obtain the value of a quantum bit. The quantum
circuit model allows measuring an individual quantum bit with respect to the
computational basis. We define these measurement operations in this section
and discuss some possible extensions.

Assume that we have a memory consisting of n quantum bits. Suppose
that the memory is in the quantum state

v =
∑
x∈Fn2

ax|x〉, ax ∈ C.

The state vector v is, as always, assumed to be of unit norm, ‖v‖ = 1. A
measurement of the quantum bit at position i yields the result k ∈ {0, 1}
with probability ∑

x∈Fn2 with xi=k

|ax|2.

The measurement changes, in general, the state vector. If k is observed, then
the resulting state of the memory is given by 1

‖vk‖vk, where

vk =
∑

x∈Fn2 with xi=k

ax|x〉.

Let us illustrate the effect of this operation in the case of two quantum
bits. Suppose that the memory is in the state

v =
1

2
|00〉+

1√
2
|10〉+

1

2
|11〉.

If we measure the qubit at position i = 0, then we will observe 0 with prob-
ability (1/2)2 + (1/

√
2)2 = 3/4, and 1 with probability (1/2)2 = 1/4. Note

that v0 = 1
2 |00〉+ 1√

2
|10〉 and v1 = 1

2 |11〉. Therefore, if we observe 0, then the

memory will be in the state

1

‖v0‖
v0 =

2√
3
v0 =

1√
3
|00〉+

2√
6
|10〉,

and if we observe 1, then the memory will be in the state

1

‖v1‖
v1 = 2v1 = |11〉.
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Exercise 2.24 Let v = 1
3 |00〉 +

√
3
3 |01〉 +

√
5
3 |10〉. If we measure the least

significant bit, what is the probability to observe 0, respectively 1? Determine
the resulting states v0 and v1 of the memory.

The graphical notation for a measurement is the meter sign. For instance,
the measurement of the least significant quantum bit is depicted by

The reader familiar with quantum mechanics will notice that many more
types of measurements are, in principle, possible. However, the practical ways
to measure quantum bits are typically rather limited. Although quantum
physics allows us to measure with respect to any orthonormal basis, we limit
ourselves here to the computational basis. If we could perform a measurement
with respect to a totally arbitrary orthonormal basis, then there would be no
need for quantum gates. The quantum algorithm would then simply consist
of a measurement in the appropriate basis.

§5 Examples

We give in this section some tiny examples, which illustrate the notions that
we have introduced so far. We will mainly discuss some small quantum cir-
cuits, which do not necessarily have any purpose other than illustrating the
effect of quantum operations. The superficial examples given here allow us,
nonetheless, to illustrate some common tricks of the trade. We will discuss
some more meaningful examples in the next chapter.

Example 1. The first example illustrates how the Hadamard gates can be
used to generate quickly a superposition of all possible input states. Suppose
that the Hadamard gate is applied to both quantum bits, first on the least
significant bit, then on the most significant bit:

H

H

Therefore, the action on the state vector is given by (H⊗12)(12⊗H). Suppose
that the input is |00〉 = |0〉 ⊗ |0〉. The intermediate state after applying the
first gate is

|0〉 ⊗H|0〉 = |0〉 ⊗ (
1√
2
|0〉+

1√
2
|1〉).
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The final state after applying the second gate is

H|0〉 ⊗ (
1√
2
|0〉+

1√
2
|1〉) = (

1√
2
|0〉+

1√
2
|1〉)⊗ (

1√
2
|0〉+

1√
2
|1〉).

We can expand the right hand side using the bilinear relations of the tensor
product, and obtain the simpler form

1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉.

We could have obtained the same result by applying the gate on the most
significant qubit first, and then the gate on the least significant bit; or even
by applying both gates at the same time.

Exercise 2.25 Suppose that A1 and B1 are n × n matrices, and A2 and B2

are m×m matrices. Show that (A1 ⊗A2)(B1 ⊗B2) = (A1B1)⊗ (A2B2).

A consequence of this exercise is that if we have two quantum gates, which
affect disjoint sets of quantum bits, then we can execute these gates in arbitary
order. Indeed, we have (A⊗ 1m)(1n ⊗B) = (1n ⊗B)(A⊗ 1m). We can even
execute these operations in parallel, because (A ⊗ 1m)(1n ⊗ B) = A ⊗ B.
Therefore, gates acting on different quantum bits are often denoted on top
of each other, as shown on the right, to make the graphical notation more
compact:

A

B
=

B

A
=

A

B

These rules are also useful when one attempts to simplify quantum circuits.

Example 2. Engineering a specific quantum state is a frequent subtask
in the design of quantum algorithms. For instance, suppose that we need to
prepare four quantum bits in the state

1√
2
|0000〉+

1√
2
|1111〉.

Assume that the quantum bits are initially in the state |0000〉. We can apply
the Hadamard gate on the most significant qubit to obtain the state

1√
2
|0000〉+

1√
2
|1000〉.
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Applying controlled-not gates on the three least significant qubits as target
qubits, with the most significant bit as a control bit, yields the desired state

1√
2
|0000〉+

1√
2
|1111〉.

Indeed, if we apply the three controlled-not gates to the state |0000〉, then
this state remains unchanged, and if we apply the three controlled-not gates
to |1000〉, then we get |1111〉; the result follows by linearity of the quantum
gates. In graphical notation, the quantum circuit is given by

H

Exercise 2.26 Design a quantum circuit that prepares the superposition of
all basis states with even parity for a system of three quantum bits, namely
the state

1

2
|000〉+

1

2
|011〉+

1

2
|101〉+

1

2
|110〉.

Assume that the memory is initially in the state |000〉.

Example 3. Suppose that we have a boolean function f : Fn
2 → F2. A

quantum circuit implementing f has to be realized by a unitary map. This
can be accomplished, for instance, by implementing the map

|y〉 ⊗ |x〉 7→ |y ⊕ f(x)〉 ⊗ |x〉

on n + 1 qubits, where x ∈ Fn
2 , and y ∈ F2. The most significant bit is the

output bit, and the n lowest significant bits are the input bits. The result of
f(x) is added modulo 2 to the output bit. The result is a quantum circuit of
the form

|x〉

|y〉

...
f ... |x〉

|y ⊕ f(x)〉
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The linearity of the circuit allows to evaluate f for any linear combination of
the basis states. Assume that all n+ 1 quantum bits are initialized with state
|0〉. We apply the Hadamard gate to all n input bits. The resulting state is

1√
2n

∑
x∈Fn2

|0〉 ⊗ |x〉,

a superposition of all possible inputs. If we apply the circuit implementing
the function f , then we obtain as a result

1√
2n

∑
x∈Fn2

|f(x)〉 ⊗ |x〉.

Thus, the circuit evaluates the function f for all possible inputs at once.

Exercise 2.27 Design a quantum circuit that implements the parity function
f(x2, x1, x0) = x2⊕x1⊕x0. Show how this circuit can be used to generate the
state 1

2 (|0000〉+ |1010〉+ |1100〉+ |0110〉) . Assume that the input is |0000〉.
You can use additional single qubit gates to obtain this result.
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§6 Summary

The state space of a memory with n quantum bits is given by the complex
vector space C2n ∼= C2 ⊗ · · · ⊗ C2. We choose, once and for all, a fixed
orthonormal basis of this vector space, and call it the computational ba-
sis. Its basis vectors are denoted by |0 · · · 00〉, |0 · · · 01〉, · · · , |1 · · · 11〉. An
arbitrary state of the memory is of the form∑

x∈Fn2

ax|x〉, where
∑
x∈Fn2

|ax|2 = 1. (2.6)

A measurement of the quantum bit at position i yields the result k ∈ {0, 1}
with probability

∑
xi=k
|ax|2. If k is observed, then the resulting state after

the measurement is 1
‖vk‖vk, where vk denotes the vector

vk =
∑

x∈Fn2 ,xi=k
ax|x〉.

A single-qubit gate is determined by a matrix U ∈ U(2) and a bit po-
sition i. Such a gate modifies the state of the memory by applying the
unitary matrix 12n−i−1⊗U⊗12i . A controlled-not gate Λi,k(X) is specified
by its action on the basis vectors

Λi,k(X)|xn−1 · · ·x1x0〉 = |yn−1 · · · y1y0〉,

where yj = xj for all j 6= k, and yk = xi ⊕ xk.





Chapter 3

Algorithmic Appetizers

In this chapter, we discuss three small algorithms. The examples illustrate
the operations that we introduced in the previous chapter. We begin with a
communication protocol, which allows to communicate the state of a single
quantum bit. This process is known as teleportation, a somewhat ambitious
name for a simple protocol.

§1 Teleportation

Suppose that Alice wants to communicate the state of a quantum bit to Bob.
The matter is complicated by the fact that the quantum state might not be
known to her. This would not help her much anyway, since, in most cases,
she would not be able to communicate a complete description of the state by
classical communication alone.

Alice and Bob need, in addition to classical communication, another re-
source. If Alice and Bob share a pair of quantum bits, which are in the state

1√
2
|00〉+

1√
2
|11〉, (3.1)

then it is not difficult to communicate the unknown quantum state, as we will
show in this section. This method has been suggested by Bennett, Brassard,
Crepeau, Josza, Peres, and Wootters in 1993, and is known as teleportation.
This type of teleportation has been demonstrated in several experiments.

We need three quantum bits in the teleportation protocol. We assume
that the two most significant qubits belong to Alice, and the least significant
qubit belongs to Bob. Alice wants to communicate the most significant bit to
Bob. We assume that this quantum bit is in the state a|0〉 + b|1〉, but Alice

25
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might not be aware of that, and the least two qubits are in the state (3.1).
Therefore, the system is initially in the state

(a|0〉+ b|1〉)⊗ (
1√
2
|00〉+

1√
2
|11〉). (3.2)

We assume that Alice and Bob are located far apart. They can apply op-
erations locally on the qubits in their possession and communicate over the
phone. The teleportation is surprisingly simple. Alice applies a controlled-not
operation Λ2,1(X), and a Hadamard gate to the most significant bit. Then
she measures her quantum bits, and tells Bob what kind of gate he should
apply to his quantum bit.

Alice

Alice

Bob

H

Apply
corrections

The controlled-not gate Λ2,1(X) transforms the state (3.2) to

a|0〉 ⊗ (
1√
2
|00〉+

1√
2
|11〉) + b|1〉 ⊗ (

1√
2
|10〉+

1√
2
|01〉).

Applying the Hadamard gate on the most significant qubit yields the state

a( 1√
2
|0〉+ 1√

2
|1〉)⊗ ( 1√

2
|00〉+ 1√

2
|11〉)

+ b( 1√
2
|0〉 − 1√

2
|1〉)⊗ ( 1√

2
|10〉+ 1√

2
|01〉).

The bilinear relations of the tensor product allow this state to be rewritten as
follows:

a(12 |000〉+ 1
2 |011〉+ 1

2 |100〉+ 1
2 |111〉)

+b(12 |001〉+ 1
2 |010〉 − 1

2 |101〉 − 1
2 |110〉).

We collect the terms with the same two most significant qubits, and use the
bilinear relations of the tensor product to express this state in yet another,
but still equivalent, form:

1

2

(
|00〉 ⊗ (a|0〉+ b|1〉) + |01〉 ⊗ (a|1〉+ b|0〉)

+|10〉 ⊗ (a|0〉 − b|1〉) + |11〉 ⊗ (a|1〉 − b|0〉)
)
.
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Alice finally measures the two most significant qubits. The different measure-
ment results and corresponding post-measurement states are shown in the
following table:

Observation Resulting State Alice tells Bob

00 |00〉 ⊗ (a|0〉+ b|1〉) to do nothing
01 |01〉 ⊗ (a|1〉+ b|0〉) to apply X
10 |10〉 ⊗ (a|0〉 − b|1〉) to apply Z
11 |11〉 ⊗ (a|1〉 − b|0〉) to apply ZX

We note that the resulting state after the measurement can be transformed in
each case into a state of the form |x2x1〉 ⊗ (a|0〉 + b|1〉), with xi ∈ {0, 1}, by
applying the single-qubit gate recommended by Alice. We have accomplished
our goal: Alice has successfully communicated the state a|0〉+ b|1〉 to Bob.

Entanglement. Let Cn and Cm be state spaces of two quantum systems.
A state of Cn ⊗Cm that can be written in the form v ⊗ w, for some v ∈ Cn

and w ∈ Cm, is called decomposable. If a state is not decomposable, then
it is called an entangled state. Teleportation and many other protocols in
quantum computing use entanglement as a resource.

Exercise 3.1 Show that the state (3.1) is an entangled state.

There exists a simple criterion that allows us to decide whether an arbitrary
state in C2⊗C2 is entangled or not. We have to check only a single invariant
of the state to decide this question.

Exercise 3.2 Prove that the state |ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉 is
decomposable if and only if the coefficients satisfy αδ − βγ = 0.

The state (3.1) is called an Einstein-Podolsky-Rosen state, or EPR
state for short. This state received considerable attention after the famous
critique on quantum mechanics by Einstein, Podolsky, and Rosen; particularly
in Bohm’s interpretation. However, there is nothing sacred about this state,
and it is, of course, possible to use other entangled states for teleportation.

Exercise 3.3 Suppose that Alice and Bob share the state 1√
2
|00〉 + eiθ√

2
|11〉,

θ ∈ R. Assume that Alice wants to use her teleport circuit to communicate
an unknown state a|0〉 + b|1〉 of some quantum bit to Bob. Assuming that
they both know θ, what kind of operations does Bob have to apply when he
learns Alice’s measurement results? Derive all steps carefully.
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If the state shared by Alice and Bob is not entangled, then teleportation is not
possible. However, not every entangled state can be used in for teleportation.
We will show later that the shared state has to be a so-called maximally
entangled state.

Extensions. Suppose that Alice wants to communicate the state of a sys-
tem of several quantum bits to Bob. Can she teleport one qubit at a time?
We contend that this is the case. To prove this claim, we assume that Alice
has n+ 1 quantum bits, which are in the state

2n−1∑
k=0

1∑
j=0

akj |k〉 ⊗ |j〉 ∈ C2n ⊗C2. (3.3)

If Alice wants to communicate this state to Bob using the teleportation pro-
tocol, then she needs to share n+ 1 EPR pairs with Bob. It would be tedious
to give a direct proof that this approach works. We show instead that tele-
portation is faithful in the following sense: If Alice teleports a single qubit,
then Alice’s remaining n qubits, and the qubit that Bob has received, are in
the state (3.3), and these n + 1 qubits are not entangled with the remaining
part of the system. It follows that we can teleport one qubit at a time.

It remains to show that the teleportation of one qubit will preserve the
state (3.3), except that one qubit is transferred from Alice to Bob. The intial
state of the system is

2n−1∑
k=0

1∑
j=0

akj |k〉 ⊗ |j〉 ⊗ (
1√
2
|00〉+

1√
2
|11〉).

Note that it suffices to consider one EPR state to teleport a single qubit. We
now repeat the exact same teleportation protocol as before. Intially, Alice
applies the controlled-not gates Λ2,1(X); this yields the state

2n−1∑
k=0

(
ak0|k〉 ⊗ |0〉 ⊗ (

1√
2
|00〉+

1√
2
|11〉)

+ak1|k〉 ⊗ |1〉 ⊗ (
1√
2
|10〉+

1√
2
|01〉)

)
.

Then she applies the Hadamard gate on the qubit at position 2, which yields
the state

2n−1∑
k=0

(
ak0|k〉 ⊗

1

2
(|0〉+ |1〉)⊗ (|00〉+ |11〉)

+ak1|j〉 ⊗
1

2
(|0〉 − |1〉)⊗ (|10〉+ |01〉)

)
.
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We want to measure the qubits at positions 1 and 2. We use the bilinear
relations of the tensor product to rewrite this state in the more convenient,
but equivalent, form

2n−1∑
k=0

1

2

(
|k〉 ⊗ |00〉 ⊗ (ak0|0〉+ ak1|1〉)

+|k〉 ⊗ |01〉 ⊗ (ak0|1〉+ ak1|0〉)

+|k〉 ⊗ |10〉 ⊗ (ak0|0〉 − ak1|1〉)

+|k〉 ⊗ |11〉 ⊗ (ak0|1〉 − ak1|0〉)
)
.

Suppose that Alice measures the qubits at positions 2 and 1. If she observes
x2 and x1, respectively, and informs Bob to apply Zx2Xx1 , then after applying
Bob’s correction operations, we get

2n−1∑
k=0

1∑
j=0

|k〉 ⊗ |x2x1〉 ⊗ akj |j〉 =

2n−1∑
k=0

1∑
j=0

akj |k〉 ⊗ |x2x1〉 ⊗ |j〉.

We note that Alice’s n most significant qubits, and Bob’s least significant
qubit are in the state (3.3), and that these qubits are not entangled with the
qubits at positions 1 and 2.

We can summarize our findings as follows: If Alice wants to communi-
cate the state of n + 1 quantum bits, then she can do that by applying the
teleportation protocol n+ 1 times. If the system is initially in the state

2n−1∑
k=0

1∑
j=0

akj |k〉 ⊗ |j〉 ⊗
n⊗
i=0

(
1√
2
|00〉+

1√
2
|11〉),

then after applying 2n+2 gate operations and 2n+2 measurements on Alice’s
side, and up to 2n+ 2 operations on Bob’s side, they manage to transfer the
state (3.3) to Bob.

Remark. Note that the protocol simply communicates quantum states,
and it does not teleport matter. You find many exaggerated conclusions in
publications about teleportation – watching episodes of Star Trek seems to
have side effects.

§2 Deutsch’s Problem

Suppose that you are given a black box that contains an implementation
of a boolean function f : F2 → F2. Your task is to determine the parity
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f(0)⊕ f(1), the sum of f(0) and f(1) modulo 2. The goal is to solve this task
with a minimal number of calls to the black box.

The classical solution to this problem requires two calls to the black box,
since the function might be constant or not. In the quantum version, you are
given an implementation of f as a quantum circuit on two quantum bits,

|x1〉 ⊗ |x0〉 7→ |x1〉 ⊗ |x0 ⊕ f(x1)〉, (3.4)

with x1, x0 ∈ F2 = {0, 1}. The quantum version can be solved with a single
call to the black box. The problem and its solution were suggested by Deutsch
in 1985; it is historically one of the first quantum algorithms.

Exercise 3.4 Give implementations of the quantum circuit (3.4) for the con-
stant functions (a) f(0) = f(1) = 0, and (b) f(0) = f(1) = 1, as well as for
the balanced functions (c) f(0) = 0, f(1) = 1, and (d) f(0) = 1, f(1) = 0.

Let B denote the unitary map on C4 determined by (3.4). We will derive
the solution in some small steps. It is clear that we have to take advantage
of the superposition principle to evaluate the boolean function simultaneously
for both possible input arguments. The solution to Deutsch’s problem uses
an additional trick, which allows us to encode the value of f(x) into a phase
factor. Suppose that the least significant bit is in the state 1/

√
2(|0〉 − |1〉),

then

B

(
|x1〉 ⊗

( 1√
2
|0〉 − 1√

2
|1〉
))

= |x1〉 ⊗
( 1√

2
|f(x1)〉 −

1√
2
|1⊕ f(x1)〉

)
=: vx1

for all x1 ∈ {0, 1}. If the value of f(x1) is zero, then the input state remains
invariant; otherwise, B affects a change of sign. Explicitly,

vx1 = (−1)f(x1)|x1〉 ⊗
( 1√

2
|0〉 − 1√

2
|1〉
)
.

We can now use the superposition principle. If we choose 1/
√

2(|0〉+ |1〉) for
the most significant qubit, then we obtain the result 1/

√
2(v0 + v1) since the

black box B is linear. To put this in a different way, we get

B

(
1

2
(|0〉+ |1〉)⊗ (|0〉 − |1〉)

)
=

1

2
((−1)f(0)|0〉+ (−1)f(1)|1〉)⊗ (|0〉 − |1〉).

The goal was to discriminate between functions, which satisfy f(0)⊕f(1) = 0,
and functions satisfying f(0)⊕ f(1) = 1. The previous state is equivalent to

±1

2
(|0〉+ |1〉)⊗ (|0〉 − |1〉) if f(0)⊕ f(1) = 0,

±1

2
(|0〉 − |1〉)⊗ (|0〉 − |1〉) if f(0)⊕ f(1) = 1.
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If we apply the Hadamard gate on the most significant qubit, then we get
±|0〉 ⊗ 1√

2
(|0〉 − |1〉) if f(0)⊕ f(1) = 0,

±|1〉 ⊗ 1√
2

(|0〉 − |1〉) if f(0)⊕ f(1) = 1.

We measure the most significant qubit now. If the function in the black box
satisfies f(0) ⊕ f(1) = 0, then we will observe 0 with certainty. If f satisfies
f(0)⊕f(1) = 1, then we will observe 1. Note that the algorithm is completely
deterministic. We can summarize the algorithm that we have developed as
follows:

|0〉

|1〉 H

H
B

H

The reader should pause here for a moment and retrace each step in the
circuit diagram. The first two Hadamard gates prepare the superposition of
the input and the state which allows the encoding of the value of f(x) into a
phase factor.

§3 Hidden Subgroup Problems

Deutsch’s problem is an instance of a hidden subgroup problem. The hidden
subgroup problem is often considered as the Holy Grail of quantum computing
and has inspired a considerable amount of research. We need some terminology
before we can state this problem. Recall that a group is a non-empty set G
with a composition operation ◦ : G×G→ G, such that

G1 ((x ◦ y) ◦ z) = (x ◦ (y ◦ z)) holds for all x, y, z ∈ G;

G2 there exists an element e ∈ G such that e ◦ x = x ◦ e = x for all x ∈ G;

G3 for each x ∈ G, there exists an x−1 ∈ G such x ◦ x−1 = x−1 ◦ x = e.

Axiom G1 states that the composition is associative, and G2 that there exists
an identity (or neutral) element. Note that this identity element is uniquely
determined. The axiom G3 states that each element x in G has an inverse
element.
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Exercise 3.5 Show that (a) the integers Z with addition as composition is a
group; (b) the set Z/nZ = {0, · · ·n− 1} of integers with addition modulo n is
a group; (c) the set GL(n,R) of all real invertible n × n matrices is a group
with matrix multiplications as composition. Explicitly determine the inverses
and the identity element in all cases.

A subset H of G is called a subgroup of G if and only if it forms a group
under the restriction of the composition ◦ to H. If S is a subset of G, then
〈S〉 denotes the smallest subgroup of G containing S. If there exists a finite
set S such that 〈S〉 = G, then G is called a finitely generated group.

Exercise 3.6 Determine all subgroups of the group Z/6Z.

Exercise 3.7 Determine which of the following groups are finitely generated:
(a) the additive group of integer Z, (b) the group Z/nZ. If possible, give an
explicit set of generators.

We can formulate the problem as follows:

The Hidden Subgroup Problem: Let f : G → X be a black
box function from a finitely generated group G to a finite set X
such that

f(x) = f(y) if and only if y−1x ∈ H, (3.5)

where H is some initially unknown subgroup of G. Your task is to
find a generating set S of H.

The hidden subgroup problem serves as a yardstick measuring the progress
in quantum computing. Various instances have been solved, and some see
numerous examples in the following chapters.

We have already mentioned that Deutsch’s problem can be viewed as a
special case of the hidden subgroup problem. Indeed, let the group G = Z/2Z
and the set X = Z/2Z. We have two possible subgroups of G, namely H =
{0, 1} and H = {0}. If the hidden subgroup H = {0}, then the constraint (3.5)
implies that f has to be a balanced function. If H = {0, 1}, then f has to be
a constant function.

Exercise 3.8 Assume that f : Z/4Z → Z/2Z is a black box function for a
hidden subgroup problem. Enumerate all potential hidden subgroups H of
G = Z/4Z that can be encoded by black box functions of this type.
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Exercise 3.9 Let f : Z/4Z → Z/2Z be a black box function for a hidden
subgroup problem. Assume that the black box is realized by a quantum
circuit, which implements the map |x1x0〉 ⊗ |y〉 7→ |x1x0〉 ⊗ |y ⊕ f(x1, x0)〉,
with x1, x0, y ∈ F2. We assume that the binary string x1x0 encodes the
number 2x1+x0. Design a quantum circuit, which solves this hidden subgroup
problem.

Almost all quantum algorithms that have an exponential speed-up over the
best classical algorithms known to date can be formulated as hidden subgroup
problems, or some closely related variation of this problem.

§4 A Small Search Algorithm

Suppose that we are given a black box function f : Fn
2 → F2 such that f(s) = 1

for some s ∈ F2
2, and f(x) = 0 otherwise. We want to find this element s

satisfying the search criterion f(s) = 1. Classically, we need to evaluate f(x)
more than two times to find s with probability greater than 1/2. We discuss
in this section a quantum algorithm that allows us to find s with probability
1 using a single evaluation of the black box function.

We assume that the black box function is given in form of a quantum
circuit, which realizes the unitary map Bf given by

|x1x0〉 ⊗ |y〉 7→ |x1x0〉 ⊗ |y ⊕ f(x1, x0)〉,

where x1, x0, y ∈ F2. We evaluate Bf on a superposition of all inputs, and
encode the result as a sign change. We accomplish this by initializing with
|0〉 ⊗ |0〉 ⊗ |1〉, and by applying Hadamard gates to all three qubits; these
operations generate the state

1

2
(|00〉+ |01〉+ |10〉+ |11〉)⊗ 1√

2
(|0〉 − |1〉).

Applying Bf to this state yields one of the following four possible results:

f(s) = 1 resulting state

s = 00 1
2(−|00〉+ |01〉+ |10〉+ |11〉)⊗ 1√

2
(|0〉 − |1〉),

s = 01 1
2(|00〉 − |01〉+ |10〉+ |11〉)⊗ 1√

2
(|0〉 − |1〉),

s = 10 1
2(|00〉+ |01〉 − |10〉+ |11〉)⊗ 1√

2
(|0〉 − |1〉),

s = 11 1
2(|00〉+ |01〉+ |10〉 − |11〉)⊗ 1√

2
(|0〉 − |1〉).
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We note that the four states are orthogonal. Therefore, it is possible to find a
base change T transforming the two most significant qubits into the compu-
tational bases states. The coordinate transform is given by

T =
1

2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 .

After this base change, we can measure the result in the computational basis.
The resulting circuit is

|0〉

|0〉

|1〉 H

H

H

Bf
T

Notice that if the search string is s = (x1, x0), then we will observe the two
bits (x1, x0) in the measurement.

It remains to realize the base change T by a sequence of quantum gates.
Note that

T = (H ⊗H) diag(1,−1,−1,−1)(H ⊗H).

This is easily verified by a direct computation. The diagonal matrix D =
diag(1,−1,−1,−1) can be realized by the circuit

D =
Z

Z

H H

Therefore, we can implement T by

T =
H

H

Z

Z

H H H

H
=

X

ZH H

It is possible to generalize this search problem to n quantum bits. A
quantum algorithm to solve this problem was published by Grover in 1996.
We will discuss his algorithm in detail in one of the following chapters.
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§5 Summary

• Teleportation is a communication protocol that allows to commu-
nicate the state of n quantum bits from Alice to Bob, if they share
n EPR pairs.

• Deutsch’s problem asks to evaluate the parity f(0) ⊕ f(1) of a
boolean black box function f : F2 → F2. A quantum algorithm can
solve this task with a single evaluation of the black box function.

• The hidden subgroup problem asks us to find a generating set
of an unknown subgroup H of a finitely generated group G, given a
black box function f that maps elements of the group G to a finite
set X such that f(x) and f(y) are the same if and only if y−1x ∈ H.

• Let f : F2
2 → F2 be a black box function, which is constant zero

except on one argument. The search algorithm allows us to find
this argument with a single evaluation of f . This algorithm was
suggested by Grover in 1996.





Chapter 4

Universality

A program on a quantum quantum computer is a sequence of instructions
which manipulate the state of the computer. In the quantum circuit model,
the instructions are the quantum gate operations and the measurement oper-
ations. We show in this chapter that the elementary instructions introduced
so far (namely, single qubit gate and controlled not gates) can express any
unitary operation on the computational state.

§1 Gates with Multiple Control Bits

In this section, we introduce gates that generalize the controlled-not gate.
We will now allow that single qubit gates can be controlled by one or several
quantum bits. For convenience, we will allow that a gate can act when certain
control bit are 1 and other control bits are 0. These gates will turn out to be
useful when developing more elaborate quantum circuits.

Suppose that we have a system of n quantum bits. Let o, ι, and τ be three
pairwise disjoint subsets of {0, . . . , n − 1} such that τ contains just a single
element, and let U be a unitary 2 × 2 matrix. The action of a controlled-U
gate Λo,ι,τ (U) on the computational basis is given by

Λo,ι,τ (U)|xn−1 · · ·x1x0〉 =


|xn−1 · · ·xt+1〉 ⊗ U |xt〉 ⊗ |xt−1 · · ·x1x0〉

if xk = 0 for all k ∈ o, x` = 1 for all ` ∈ ι,
and τ = {t};
|xn−1 · · ·x1x0〉 otherwise,

where xk ∈ {0, 1} for all k in the range 0 ≤ k < n. In other words, the gate
acts on the quantum bit at position t ∈ τ with U when all control bits in the
set ι are equal to 1, and all control bits in the set o are equal to 0. For ease

37
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of notation, we will omit set braces when any of these sets contain a single
element.

The next two examples show that the single qubit gates and the controlled-
not gates are special cases of the controlled-U gate:

Example 1 If the condition sets are empty, o = ι = ∅, then Λ∅,∅,t(U) is
nothing but a single qubit gate acting on the qubit at position t.

Example 2 If we denote by X the not gate, then Λ∅,k,t(X) is a controlled-not
gate with control qubit at position k and target qubit at position t.

The position of the control bits that are conditioned on 0 are specified
by the set o, and the position of control bits that are conditioned on 1 are
specified by the set ι. In quantum circuit diagrams, we will use a non-filled
circle ◦ to denote the position of a 0 condition, and a filled circle • to denote
the position of a 1 condition. The next example illustrates four basic cases of
quantum gates with two controls.

Example 3 This example illustrate the various conditions on two control
quantum bits. The first gate conditions the action of the gate on the two
most significant quantum bits being 0, the second gate condition the action
of the gate on the most significant quantum bit being 0 and the middle bit
being 0.

U U

Λ{1,2},∅,0(U)

|00〉 ⊗ |ψ〉 7→ |00〉 ⊗ U |ψ〉
|01〉 ⊗ |ψ〉 7→ |01〉 ⊗ |ψ〉
|10〉 ⊗ |ψ〉 7→ |10〉 ⊗ |ψ〉
|11〉 ⊗ |ψ〉 7→ |11〉 ⊗ |ψ〉

Λ2,1,0(U)

|00〉 ⊗ |ψ〉 7→ |00〉 ⊗ |ψ〉
|01〉 ⊗ |ψ〉 7→ |01〉 ⊗ U |ψ〉
|10〉 ⊗ |ψ〉 7→ |10〉 ⊗ |ψ〉
|11〉 ⊗ |ψ〉 7→ |11〉 ⊗ |ψ〉

The third gate conditions on the most significant bit being 1 and the least
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significant bit being 0. The fourth gate conditions on both bits being 1.

U U

Λ1,2,0(U)
|00〉 ⊗ |ψ〉 7→ |00〉 ⊗ |ψ〉
|01〉 ⊗ |ψ〉 7→ |01〉 ⊗ |ψ〉
|10〉 ⊗ |ψ〉 7→ |10〉 ⊗ U |ψ〉
|11〉 ⊗ |ψ〉 7→ |11〉 ⊗ |ψ〉

Λ∅,{1,2},0(U)
|00〉 ⊗ |ψ〉 7→ |00〉 ⊗ |ψ〉
|01〉 ⊗ |ψ〉 7→ |01〉 ⊗ |ψ〉
|10〉 ⊗ |ψ〉 7→ |10〉 ⊗ |ψ〉
|11〉 ⊗ |ψ〉 7→ |11〉 ⊗ U |ψ〉

It might be worthwhile to single out a particularly important special case.

Example 4 The Toffoli gate λ∅,{1,2},0}(X) is a not gate that applied if and
only if its two control bits are set. his gate is graphically denoted by

In other words, the Toffoli gates maps |110〉 7→ |111〉 and |111〉 7→ |110〉, and
keeps the remaining states of the computational basis unchanged.

We call Λo,ι,t(U) a single control quantum gate if and only if |o∪ι| = 1,
and a multiple control quantum gate if and only if |o ∪ ι| > 1.

§2 Single Control Quantum Gates

Single control quantum gates are a modest generalization of controlled-not
gates. In this section, we show that any single control quantum gate can be
realized by a sequence of controlled-not and single quantum bit gates.

We begin with a parameterization of matrices in the unitary group U(2)
that is of its own interest.

Lemma 1 A unitary matrix U ∈ U(2) can be expressed in the form

U = eia
(
e−ib 0

0 eib

)(
cos c − sin c
sin c cos c

)(
e−id 0

0 eid

)
,

for some real numbers a, b, c, and d.
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Proof. We can write U in the form U = eiaV , where V is some unitary matrix

with determinant 1. The matrix V has to be of the form V =
(
α −β
β α

)
. Indeed,

the columns of a unitary matrix are orthogonal, hence the right column of V
has to be a multiple of (−β, α)t; and the determinant constraint forces V
to be of the given form. We can write α and β in the form α = eih cos c
and β = e−ik sin c for some real numbers h, k, c, because α and β satisfy
|α|2 + |β|2 = 1; it follows that

V =

(
eih cos c −eik sin c
e−ik sin c e−ih cos c

)
.

We can find real numbers b and d satisfying h = −d− b and k = d− b, hence

V =

(
e−i(b+d) cos c −ei(d−b) sin c

ei(b−d) sin c ei(b+d) cos c

)
=

(
e−ib 0

0 eib

)(
cos c − sin c
sin c cos c

)(
e−id 0

0 eid

)
,

which proves the claim.

Let us denote by S(b) and R(c) the matrices

S(b) =

(
e−ib 0

0 eib

)
and R(c) =

(
cos c − sin c
sin c cos c

)
.

The statement of the previous lemma is that a unitary matrix can be written
in the form U = eiaS(b)R(c)S(d) for some a, b, c, d ∈ R. Notice that

XR(c)X = R(−c) and XS(b)X = S(−b).

Theorem 1 For each unitary matrix U ∈ U(2) there exist matrices A,B,C,
and E in U(2) such that

U
=

A

E

B C .

Proof. If U = eiaS(b)R(c)S(d), choosing the matrices

C = S(b)R(c/2), B = R(−c/2)S(−(d+ b)/2),
A = S((d− b)/2), E = diag(1, eia),

yields the desired result. Indeed, we have CBA = 1. Therefore, the circuit on
the right hand side yields on input of |00〉 and |01〉 the same result as Λ0;1(U).
Using X2 = 1, we obtain for CXBXA the expression

CXBXA = S(b)R(c/2)︸ ︷︷ ︸
C

X R(−c/2)XXS(−(d+ b)/2)︸ ︷︷ ︸
B

X S((d− b)/2)︸ ︷︷ ︸
A

,
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which simplifies to CXBXA = S(b)R(c/2)R(c/2)S((d+ b)/2)S((d− b)/2) =
S(b)R(c)S(d). It follows that |1〉 ⊗ |ψ〉 is transformed by the circuit on the
right hand side to

eia|1〉 ⊗ S(b)R(c)S(d)|ψ〉 = |1〉 ⊗ U |ψ〉,

which coincides with the action of Λ0;1(U).

§3 Multiple Control Quantum Gates

In this section, we will demonstrate that a quantum gate with several control
bits can be realized by single quantum bit gates and controlled-not gates.

Since one can diagonalize a unitary matrix U by a unitary base change,
it is possible to form its square root. In other words, one can find a unitary
matrix V such that U = V 2. The next lemma gives a convenient way to
find a square root of a unitary 2 × 2 matrix without tedious eigenvalue and
eigenvector calculations. This construction will be helpful when trying to
replace a quantum gate with two control bits by simpler gates that have one
control bit.

Lemma 2 Let U be a unitary 2 × 2 matrix that is not a multiple of the
identity matrix I. Then

V =
1√

trU ± 2
√

detU
(U ±

√
detU I)

is a unitary matrix satisfying U = V 2.

Proof. Let us first show that V is a well-defined matrix. Seeking a contradic-
tion, we assume that trU ± 2

√
detU = 0. Let λ1, λ2 be the eigenvalues of U .

We have detU = λ1λ2 and trU = λ1 + λ2. It follows that

λ1 + λ2 = trU = ∓2
√

detU = 2
√
λ1λ2.

Since U is unitary, |λ1| = |λ2| = 1. Therefore, |λ1 + λ2| = 2|
√
λ1λ2| = 2.

This means that the triangle inequality |λ1 + λ2| ≤ 2 = |λ1|+ |λ2| holds with
equality, which implies that λ1 = rλ2 for some positive real number r. Since
|λ1| = |λ2| = 1, we have |r| = r = 1, which means that the eigenvalues λ1 and
λ2 must be the same. This would imply that U is a multiple of the identity,
contradicting our hypothesis. Therefore, trU ± 2

√
detU is nonzero and the

matrix V is well-defined.
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By the Cayley-Hamilton theorem, the unitary 2× 2 matrix U satisfies its
characteristic equation U2 + (trU)U + (detU)I = 0; thus,

(trU)U = U2 + (detU)I.

Using this relation, we obtain

V 2 = 1
trU±2

√
detU

(U ±
√

detUI)2

= 1
trU±

√
detU

(U2 + (detU)I ± 2
√

detU U)

= 1
trU±2

√
detU

(trU ± 2
√

detU)U = U

It remains to show that V is a unitary matrix. Recall that the unitary matrix
U can be diagonalized by a base change with some unitary matrix P , say
diag(λ1, λ2) = PUP †. Then P diagonalizes V as well, so PV P † = diag(a, b).
Since

diag(λ1, λ2) = PUP † = (PV P †)(PV P †) = diag(a2, b2),

it follows that a =
√
λ1 and b =

√
λ2 are complex numbers of absolute value

1. Therefore, diag(a, b) is a unitary matrix and we can conclude that V =
P †diag(a, b)P is a unitary matrix as well.

Theorem 2 A unitary gate controlled by two control bits can be expressed
in terms of singly controlled quantum gates as follows:

U

=

V V † V

where V is a 2× 2 unitary matrix such that U = V 2.

Proof. The gate on the left hand side acts on basis states in the following way:

|00〉 ⊗ |x〉 7→ |00〉 ⊗ |x〉
|01〉 ⊗ |x〉 7→ |01〉 ⊗ |x〉
|10〉 ⊗ |x〉 7→ |10〉 ⊗ |x〉
|11〉 ⊗ |x〉 7→ |11〉 ⊗ U |x〉

for x ∈ {0, 1}. The five gates in circuit on the right hand side act on the basis
states as follows:

|00〉 ⊗ |x〉7→|00〉 ⊗ |x〉 7→|00〉 ⊗ |x〉 7→|00〉 ⊗ |x〉 7→|00〉 ⊗ |x〉 7→|00〉 ⊗ |x〉
|01〉 ⊗ |x〉7→|01〉 ⊗ V |x〉7→|01〉 ⊗ V |x〉7→|01〉 ⊗ V †V |x〉7→|01〉 ⊗ |x〉 7→|01〉 ⊗ |x〉
|10〉 ⊗ |x〉7→|10〉 ⊗ |x〉 7→|11〉 ⊗ |x〉 7→|11〉 ⊗ V †|x〉 7→|10〉 ⊗ V †|x〉7→|10〉 ⊗ |x〉
|11〉 ⊗ |x〉7→|11〉 ⊗ V |x〉7→|10〉 ⊗ V |x〉7→|10〉 ⊗ V |x〉 7→|11〉 ⊗ V |x〉 7→|11〉 ⊗ V 2|x〉
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In other words, if the two control bits are in the state |00〉, then none of the
gates will act, so the state remains unchanged. If the two control bits are in
state |01〉, then the first control-V gate will act, but the action is undone by
the control-V † gate. If the two control bits are |10〉, then the first controlled-V
gate will not act, but the controlled-not gate and controlled-V † will act, yet
the second controlled-not and subsequent control-V gate undo the action. If
the control bits are in the state |11〉, then all but the controlled-V † gate will
act, thus applying V twice to the least signficant qubit. Therefore, the state
of the least significant qubit is given transformed by U = V 2.

In summary, the circuit on the right hand side behaves exactly like a doubly
controlled-U gate.

Theorem 3 For each unitary 2×2 matrix there exists unitary 2×2 matrices
A,B,C, and E such that a doubly-controlled U gate can be expressed in
terms of a quantum circuit with single qubits gates and controlled not gates
as follows:

U

=

A

E

B B†

E†

B

E

C

In particular, a doubly controlled-U gate can be expressed with the help of at
most 6 controlled-not gates and 8 single qubit gates.

Proof. Let V be a unitary 2× 2 matrix such that U = V 2. By Theorem 2, we
can express the doubly controlled-U gate in terms of singly controlled gates:

U

=

V V † V
(4.1)

We can express the controlled-V operation with controlled-not and single qubit
gates:

V
=

A

E

B C .
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where E is a diagonal matrix. It follows that a controlled-V † gate can be
realized by the inverse circuit:

V †
=

C† B† A†

E†

Substituting these circuits for the controlled-V and controlled-V † gates into
the quantum circuit (4.1), we obtain

A

E

B C C† B† A†

E†

A

E

B C

Evidently, we can eliminate the C gate followed by a C† gate, and the A† gate
followed by an A gate. Since E is a diagonal matrix, we can move the E and
E† gates across control qubits. This yields the following quantum circuit:

U

=

A

E

B B†

E†

B

E

C

One can easily verify that

= and =

We can use these quantum circuit identities to simplify the quantum circuit
for the controlled-U gate to

U

=

A

E

B B†

E†

B

E

C
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which proves our claim.

§4 Universality

A set of quantum gates G is called universal if and only if for all positive
integers n every unitary 2n× 2n matrix can be realized as a finite sequence of
gates in G. Our goal is to provide a short proof of the following theorem:

Theorem 4 The set of all controlled-not gates and single qubit gates is uni-
versal.

We digress a bit and recall a few facts from algebra. Let Sn denote the set
of all permutations of [n] = {0, . . . , n − 1}. A permutation σ in Sn is called
an r-cycle if there exist distinct integers a0, . . . , ar−1 in [n] such that

σ(ak) = ak+1 mod r for 0 ≤ k < r

and σ(k) = k for all other integers in [n]. We denote such an r-cycle σ by
(a0, . . . , ar−1). An arbitrary permutation of Sn can be written as a product
of disjoint cycles.

Example 5 The permutation σ in S6 given by

σ(0) = 2, σ(1) = 3, σ(2) = 0, σ(3) = 5, σ(4) = 4, σ(5) = 1,

has the cycle decomposition σ = (0, 2)(1, 3, 5).

A 2-cycle is also called a transposition.

Lemma 3 Any permutation in Sn is a product of transpositions.

Proof. A permutation is a product of disjoint cycles, and a cycle can be written
in the form (a0, . . . , ar−1) = (a0, ar−1)(a0, ar−2) · · · (a0, a1).

Example 6 The cycle (0, 1, 2, 3) can be written in the form

(0, 1, 2, 3) = (0, 3)(0, 2)(0, 1).

Lemma 4 The permutation group Sn is generated by σ = (0, 1, . . . , n − 1)
and τ = (n− 2, n− 1).
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Proof. By the previous lemma, it suffices to show that all transpositions can
be generated. Notice that (k, k+1 mod n) = σk+2τσ−(k+2) for 0 ≤ k < n. We
get the cycle δa = (k, . . . , k+ a) = (k, k+ 1)(k+ 1, k+ 2) · · · (k+ a− 1, k+ a),
with entries understood modulo n. Then (k, k + a mod n) = δ−1a (k, k + 1)δa
for all 0 ≤ k, a < n; thus, we can generate all transpositions (k, `).

Lemma 5 Every 2n × 2n permutation matrix can be realized by a sequence
of controlled-not and single qubit gates.

Proof. According to the previous lemma, the group S2n is generated by the
transposition τ = (2n−2, 2n−1) and the full cycle σ = (0, 1, . . . , 2n−1). The
transposition τ can be realized by a multiply-controlled not gate; the cycle σ
is nothing but the map x 7→ x+ 1 mod 2n, so it can be realized by a cascade
of multiply controlled-not gates that compute carry bits and a not gate for
the addition. The following figures respectively illustrate τ and σ in the case
of 4 qubits:

X

Recall that a multiply controlled-not gate can be expressed as a sequence of
controlled-not gates and single qubit gates, which proves the claim.

A unitary 2n × 2n matrix V is called a plane unitary matrix if and only if
there exist integers i and j in the range 0 ≤ i, j < 2n such that

• V |k〉 = |k〉 for all 0 ≤ k < 2n with k 6∈ {i, j};

• V |i〉 = a|i〉+ c|j〉 and V |j〉 = b|i〉+ d|j〉.

Proof. [Proof of Theorem 1.] A unitary matrix can be expressed as a product
of plane unitary matrices thanks to a well-known result by Givens. Suppose
that σ is a permutation such that σ(i) = n − 2 and σ(j) = n − 1. Then the
circuit
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...

σ−1

... (
ab
cd

)
...

σ

...

realizes a plane unitary matrix V . The claim follows, since permutation ma-
trices and multiply-controlled unitary gates can be realized by controlled-not
gates and single qubit gates.

§5 Summary

• We introduced quantum gates with several control bits. A multiple
control quantum gate Λo,ι,t(U) acts with a unitary 2 × 2 matrix on
the t-th quantum bit of a computational basis state |xn−1 · · ·x1x0〉
if and only if xk = 0 holds for all k ∈ o and xk = 1 holds for all
k ∈ ι.

• We showed that single control quantum gates can be expressed by a
sequence of single quantum bit gates and controlled-not gates.

• We showed that quantum gates with several control bits can be
realized single quantum bit gates and controlled-not gates.

• We proved that single quantum bit gates and controlled-not gates
are universal.





Appendix A

Mathematical Background

The mathematical knowledge required for the study of quantum algorithms
includes linear algebra and some abstract algebra. The standard introductory
courses at most universities cover the necessary prerequisites. We collect in
this appendix some standard definitions. If the reader is not familiar with any
notion presented here, then we suggest to consult [1], [2] or [3].

§1 Complex Numbers

The complex numbers are obtained by adjoining to the real numbers a
number i such that i2 = −1. A complex number can be uniquely written in
the form a+ bi, where a and b are real numbers. The number a is called the
real part of a + bi, and b is called the imaginary part of a + bi. We can
visualize a complex number such as 3 + 2i by a vector in the complex plane:

i

2i

3i

1 2 3

The arithmetic of complex numbers is a simple extension of real number arith-
metic. The addition of two complex numbers α = a1 + a2i and β = b1 + b2i

49
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is defined by adding the real parts and imaginary parts:

α+ β = (a1 + b1) + (a2 + b2)i.

For instance, the addition of the numbers 2 + 3i and 6 + 8i yields the number
8 + 11i. The multiplication of the numbers α and β is defined by

αβ = (a1b1 − a2b2) + i(a1b2 + a2b1).

This formula is obtained by formally multiplying α = a1+a2i and β = b1+b2i,
and simplifying the result using the rule i2 = −1.

The set of complex numbers C = {a+ ib | a, b ∈ R} forms a field under the
addition and multiplication operations defined above. This means that the
associative and distributive laws hold, and we can perform all calculations as
expected.

The modulus or absolute value of a complex number β = a + ib is
defined by |β| =

√
a2 + b2. The absolute value describes the distance of the

point (a, b) in the complex plane from the origin. For example, the absolute
value of 3 + 2i is |3 + 2i| =

√
9 + 4 =

√
13.

a = 3

b = 2i

2i

3i

The conjugate of a complex number β = a + bi is defined as β = a −
bi. A complex number β times its complex conjugate β gives the square of
its absolute value, ββ = |β|2. An immediate consequence are the rules for
division

1

β
=

β

|β|2
and

α

β
=

αβ

|β|2
.

Polar Form. A complex number β = a+ ib of modulus 1 satisfies, by defi-
nition, the equation a2 + b2 = 1. This means that the point (a, b) representing
β in the complex plane lies on a unit circle about the origin. Hence, we can
express β in the form β = eiθ = cos θ + i sin θ for some real number θ.
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If we divide a nonzero complex number β by its absolute value |β|, then
we obtain a number of absolute value 1. This follows from the fact that
β/|β| × β/|β| = |β|2/|β|2 = 1 holds. Therefore, we can write each complex
number β in the form

β = reiθ = r(cos θ + i sin θ),

where r is the absolute value r = |β| and eiθ = β/|β|. We say that reiθ is
the polar form of the complex number β. The parameter θ is called the
argument of the complex number β. We can calculate the argument θ of a
nonzero complex number β by either one of the following three formulas

θ = arccos
a

|β|
= arcsin

b

|β|
= arctan

b

a
.

Exercise A.1 Express the following numbers in the form a+ bi, where a and
b are real numbers:

(a) (2 + 3i)(3− 4i), (b) (1 + i)(1− i), (c) (1 + 2i)(1− 2i).

§2 Vector Spaces

The state space of a quantum computer is a vector space. Although we assume
the reader to be familiar with this notion, we recall the definition here. We
denote by F the real numbers R, or the complex numbers C, or any other
field. A vector space V over F is a set V that is equipped with an addition
+: V ×V → V and a scalar multiplication F ×V → V such that the following
properties are satisfied:

V1 (u+ v) + w = u+ (v + w) holds for all u, v, w ∈ V .

V2 There is an element 0 ∈ V such that 0 + v = v + 0 = v for all v ∈ V .

V3 For each v ∈ V , there exists an element −v ∈ V such that v+ (−v) = 0.

V4 u+ v = v + u holds for all u, v ∈ V .

The axioms V1–V4 state that V is an additive group.

V5 If c ∈ F , then c(u+ v) = cu+ cv for all u, v ∈ V .

V6 If a, b ∈ F , then (a+ b)v = av + bv for all v ∈ V .

V7 If a, b ∈ F , then (ab)v = a(bv).
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V8 We have 1v = v for all v ∈ V ; here is 1 the multiplicative identity of F .

Axioms V5–V8 set the rules for scalar multiplication.

A familiar example is the vector space Cm over the complex numbers C.
The elements of this vector space are of the form (x0, . . . , xm−1) such that the
entries xi are complex numbers. The scalar multiplication is c(x0, . . . , xm−1) =
(cx0, . . . , cxm−1) for complex numbers c. The addition of (x0, . . . , xm−1) and
(y0, . . . , ym−1) is defined to be (x0 + y0, . . . , xm−1 + ym−1).

Vectors v1, . . . , vm in a vector space V are called linearly independent
if and only if c1v1 + · · ·+cmvm = 0 implies that the complex coefficients ci are
all equal to 0. Recall that each vector space V has a basis B, a set of linearly
independent vectors such that each vector v ∈ V is a linear combination of
the basis vectors in B.
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