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Goal

42 CHAPTER 4. UNIVERSALITY

By the Cayley-Hamilton theorem, the unitary 2× 2 matrix U satisfies its

characteristic equation U2
+ (trU)U + (detU)I = 0; thus,

(trU)U = U2
+ (detU)I.

Using this relation, we obtain

V 2
=

1
trU±2

√
detU

(U ±
√
detUI)2

=
1

trU±
√
detU

(U2
+ (detU)I ± 2

√
detU U)

=
1

trU±2
√
detU

(trU ± 2
√
detU)U = U

It remains to show that V is a unitary matrix. Recall that the unitary matrix

U can be diagonalized by a base change with some unitary matrix P , say

diag(λ1,λ2) = PUP †
. Then P diagonalizes V as well, so PV P †

= diag(a, b).
Since

diag(λ1,λ2) = PUP †
= (PV P †

)(PV P †
) = diag(a2, b2),

it follows that a =
√
λ1 and b =

√
λ2 are complex numbers of absolute value

1. Therefore, diag(a, b) is a unitary matrix and we can conclude that V =

P †
diag(a, b)P is a unitary matrix as well.

Theorem 2 A unitary gate controlled by two control bits can be expressed

in terms of singly controlled quantum gates as follows:

U

=

V V † V

where V is a 2× 2 unitary matrix such that U = V 2
.

Proof. The gate on the left hand side acts on basis states in the following way:

|00� ⊗ |x� �→ |00� ⊗ |x�
|01� ⊗ |x� �→ |01� ⊗ |x�
|10� ⊗ |x� �→ |10� ⊗ |x�
|11� ⊗ |x� �→ |11� ⊗ U |x�

for x ∈ {0, 1}. The five gates in circuit on the right hand side act on the basis

states as follows:

|00� ⊗ |x��→|00� ⊗ |x� �→|00� ⊗ |x� �→|00� ⊗ |x� �→|00� ⊗ |x� �→|00� ⊗ |x�
|01� ⊗ |x��→|01� ⊗ V |x��→|01� ⊗ V |x��→|01� ⊗ V †V |x��→|01� ⊗ |x� �→|01� ⊗ |x�
|10� ⊗ |x��→|10� ⊗ |x� �→|11� ⊗ |x� �→|11� ⊗ V †|x� �→|10� ⊗ V †|x��→|10� ⊗ |x�
|11� ⊗ |x��→|11� ⊗ V |x��→|10� ⊗ V |x��→|10� ⊗ V |x� �→|11� ⊗ V |x� �→|11� ⊗ V 2|x�
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Proof
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Loose Ends...

It remains to show that for a given 2x2 unitary matrix U, there 
really exists a unitary 2x2 matrix V that is the “square-root” of U.
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Convenient Squareroot Lemma

§3. MULTIPLE CONTROL QUANTUM GATES 41

which simplifies to CXBXA = S(b)R(c/2)R(c/2)S((d+ b)/2)S((d− b)/2) =
S(b)R(c)S(d). It follows that |1� ⊗ |ψ� is transformed by the circuit on the
right hand side to

eia|1� ⊗ S(b)R(c)S(d)|ψ� = |1� ⊗ U |ψ�,

which coincides with the action of Λ0;1(U).

§3 Multiple Control Quantum Gates

In this section, we will demonstrate that a quantum gate with several control
bits can be realized by single quantum bit gates and controlled-not gates.

Since one can diagonalize a unitary matrix U by a unitary base change,
it is possible to form its square root. In other words, one can find a unitary
matrix V such that U = V 2. The next lemma gives a convenient way to
find a square root of a unitary 2 × 2 matrix without tedious eigenvalue and
eigenvector calculations. This construction will be helpful when trying to
replace a quantum gate with two control bits by simpler gates that have one
control bit.

Lemma 2 Let U be a unitary 2 × 2 matrix that is not a multiple of the

identity matrix I. Then

V =
1�

trU ± 2
√
detU

(U ±
√
detU I)

is a unitary matrix satisfying U = V 2.

Proof. Let us first show that V is a well-defined matrix. Seeking a contradic-
tion, we assume that trU ± 2

√
detU = 0. Let λ1,λ2 be the eigenvalues of U .

We have detU = λ1λ2 and trU = λ1 + λ2. It follows that

λ1 + λ2 = trU = ∓2
√
detU = 2

�
λ1λ2.

Since U is unitary, |λ1| = |λ2| = 1. Therefore, |λ1 + λ2| = 2|
√
λ1λ2| = 2.

This means that the triangle inequality |λ1 + λ2| ≤ 2 = |λ1|+ |λ2| holds with
equality, which implies that λ1 = rλ2 for some positive real number r. Since
|λ1| = |λ2| = 1, we have |r| = r = 1, which means that the eigenvalues λ1 and
λ2 must be the same. This would imply that U is a multiple of the identity,
contradicting our hypothesis. Therefore, trU ± 2

√
detU is nonzero and the

matrix V is well-defined.
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Conclusions

A quantum gate with 2 control bits can be realized with quantum 
gates that have just a single control bit.

More generally, a quantum gate with m control bits can be realized 
with quantum gates that have m-1 control bits. 

In summary, a quantum gates with multiple controls can be realized 
by quantum gates that have just single controls, and those can be 
realized by single quantum bit gates and controlled-not gates.
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