Problem Set 4
CPSC 440/640 Quantum Algorithms
Andreas Klappenecker

The assignment is due Friday, Oct 10, 1:00pm.

The goals of this assignment are (a) to make you familiar with the simula-
tion of quantum circuits on a classical computer, and (b) to give you the
opportunity to get familiar with lex and yacc (use flex and bison if possible).

You are given a considerable amount of time for this assignment so that
this exercise does not provide a conflict with your research. I recommend
that you start early. You can earn 150 points instead of the usual 100 points.
Some source code is provided in the tar-ball alfred.tgz.

0) Modify the source code so that it will compile on the system of your choice.
For instance, on Windows systems, you might need to include windows.h. If
your system does not support the drand48 random number generator, then
you might want to supply your own pseudo-random number generator.

1) The core simulator is contained in the file sim.c. Supplement the missing
code in the procedures measure_state and applygate.

2) Write a small test file that uses the procedures given in sim. ¢ to create the
state 0.707]00) 4+ 0.707|11) from input state |00). Do this by simulating the
action of one Hadamard gate and one controlled-not gate with applygate.
This should be followed by measuring the state with measure_state. Moni-
tor the evolution of the state after each step by print_state.

3) Get familiar with lex and yacc, or, rather, with flex and bison. Read the
manuals and implement some small example that allows you to grasp the
main concept of the interaction between lex and yacc.

4) Correct all errors so that you get a fully functional simulator for the
language Alfred.

You will receive a little Alfred program and you need to demonstrate that
your simulator works. The details will be discussed in class.

Remarks. i) The simulator assumes that you will not simulate more than
20-30 quantum bits. For efficiency reasons, information about the position
of control and target qubits are encoded by setting the corresponding bits
in an integer. For example, if the target qubit position pos is the least
significant bit, then this is represented by pos = 1<<0, if the target qubit is
the most significant qubit in a system of 3 qubits, then this is encoded by
pos = 1<<2. Review the bit operations of the language C to see the benefit
of this convention.

ii) Write the code for the procedure measure_state. The input for this
procedure is an integer pos, which has a bit set at the position of the quantum
bit, which will be observed. The measurement is done with respect to the
computational basis. Your procedure should directly modify the input state
vector state. You can address the content of this state vector by state[%],
where 0 < 7 < 1<<Nbits. Use the random number generator rand in your
implementation. Make sure that your implementation will reflect the be-
haviour of quantum mechanics. You might need to change the initialization
of the random number generator on you system to obtain the desired results.

iii) Write the code for the procedure applygate. Your code should realize
an implementation of a multiply conditioned gate, as explained in the lecture.
The conditions are provided in terms of integers. A bit set in ocnd means
that this bit must be 0, a bit set in icnd means that this bit must be set
to 1. The integer gpos has a single bit set at the target bit position of the
gate.

iv) Before writing the code for applygate, I suggest that you re-read the
lecture notes on multiple control quantum gates.

v) The circuit that you should implement in question 2) is given by

14
—

vi) Use the GNU gcc compiler. The source code uses some language
extensions provided by gcc. If you use some Windows operating system,
then I suggest that you have a look at cygwin, which provides you with all
the Unix utilities such as lex and yacc (or rather flex and bison),...

vii) You are welcome to solve this problem set in a different language such
as Ruby or C++.

viii) Discussions on piazza concerning the installation of the code on var-
ious platforms is encouraged, but discussions concerning the implementation
of applygate and measure_state are discouraged.

