Problem Set 7

Due dates: Electronic submission of this homework is due on Tuesday 4/2/2019 before 12:30pm on ecampus, a signed paper copy of the pdf file is due on 4/2/2019 at the beginning of class.

Name: (put your name here)

Resources. (All people, books, articles, web pages, etc. that have been consulted when producing your answers to this homework)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Problem 1 (20 points). Suppose that the sample space Ω is given by the set of positive integers. Let \mathcal{F} denote the smallest family of subsets of Ω such that (a) \mathcal{F} contains all finite sets, (b) \mathcal{F} is closed under complements (meaning if A is in \mathcal{F} , then A^c is in \mathcal{F}), and (c) \mathcal{F} is closed under countable unions (so if the sets E_1, E_2, \ldots are contained in \mathcal{F} , then $\bigcup_{k=1}^{\infty} E_k$ is contained in \mathcal{F}).

- (a) Show that \mathcal{F} is a σ -algebra.
- (b) Prove of disprove: \mathcal{F} is equal to the power set $P(\Omega)$.

Solution.

Problem 2 (20 points). Suppose that A and B are events in an experiment with $\Pr[A \setminus B] = 1/6$, $\Pr[B \setminus A] = 1/4$, and $\Pr[A \cap B] = 1/12$. Find the probability of each of the following events:

- (a) A,
- (b) B,
- (c) $A \cup B$,
- (d) $A^c \cup B^c$.

Solution.

Problem 3 (20 points). Give examples of events where (a) $\Pr[A \mid B] < \Pr[A]$, (b) $\Pr[A \mid B] = \Pr[A]$, and (c) $\Pr[A \mid B] > \Pr[A]$. Make sure that your proofs are complete and self-contained.

Solution.

Problem 4 (20 points). There may be several different min-cut sets in a graph. Using the analysis of the randomized min-cut algorithm, argue that there can be at most n(n-1)/2 distinct min-cut sets.

Solution.

Problem 5 (20 points). The FastCut algorithm by Karger and Stein finds a given minimum cut C with probability $P(n) \geq c/\ln n$ for some positive real number c. How many times should you repeat FastCut so that the probability to miss a given minimum cut is less than 1/n? [Hint: Put the formula $1+x \leq e^x$ to good use].

Solution.

Checklist:

- $\hfill\Box$ Did you add your name?
- □ Did you disclose all resources that you have used?

 (This includes all people, books, websites, etc. that you have consulted)
- $\hfill\Box$ Did you sign that you followed the Aggie honor code?
- □ Did you solve all problems?
- □ Did you submit the pdf file of your homework?
- □ Did you submit a hardcopy of the pdf file in class?