
Strongly Connected Components
Andreas Klappenecker

Undirected Graphs

An undirected graph that is not connected decomposes into several
connected components.

Finding the connected components is easily solved using DFS. Each
restart finds a new component - done!

Directed Graphs

In a directed graph G=(V,E), two nodes u and v are strongly
connected if and only if there is a path from u to v and a path
from v to u.

The strongly connected relation is an equivalence relation. Its
equivalence classes are the strongly connected components.

 Every node is in precisely one
strongly connected component,
since the equivalence classes
partition the set of nodes.

Component Graph

Take a directed graph G=(V,E) and let ≡ be the strongly connected
relation. Then we can define a graph Gscc = (V/≡, E≡), where the
nodes are the strongly connected components of G and there is an
edge from component C to component D iff there is an edge in G
from a vertex in C to a vertex in D.

Directed Graphs

Let G be a directed graph. Then Gscc is a directed acyclic graph.

[Indeed, the components in a cycle would have been merged into
single equivalence class.]

Interesting decomposition of G: Gscc is a directed acyclic graph, and
each node is a strongly connected component of G.

Terminology

In a directed acyclic graph, a node of in-degree 0 is called a
source node and a node of out-degree 0 is called a sink node.

Each directed acyclic graph has at least one source node and at
least one sink node.

Property 1

If depth-first search of a graph is started at node u, then it will
get stuck and restarted precisely when all nodes that are
reachable from u are visited.

In particular, if we start depth-first search at a node v in G that is
in a component C that happens to be a sink in Gscc, then it will get
stuck precisely after visiting all the nodes of C.

Thus, we have a way of enumerating a strongly connected
component given that it is a sink component.

Property 2

The node v in G with the highest final[v] timestamp in depth-first
search belongs to a start component in Gscc.

We wanted to find a sink component, but
we merely found a way to find a node in
a start component.

Reversed Graph Trick

Given the graph G=(V,E) consider its reversed graph GR=(V,ER) with
ER = { (u,v) | (v,u) in E }, so all edges are reversed.

Then GR has the same strongly connected components as G.

If we apply depth first search to GR, then the node v with the
largest finishing time belongs to a component that is a sink in Gscc.

Property 3

Let C and D be strongly connected components of a graph. Suppose
that there is an edge from a node in C to a node in D. Then the
vertex in C that is visited first by depth first search has larger
final[v] than any vertex in D.

C D

Corollary

Arranging the strongly connected components of a directed graph
in decreasing order of the highest finish time in each component
topologically sorts the strongest connected components of the
graph.

[Well, this is just topological sorting applied to the directed acyclic
graph Gscc.]

SCC Algorithm

1) Perform depth first search on GR.

2) Perform depth first search on G in decreasing order of the final
times computer in step 1).

Complexity: O(V+E)

Example

Order by decreasing finishing time: d, e, a, c, b.

e

dc

b

aG

e

dc

b

aGR 1/6
2/5

8/9

7/10

3/4

Example
Order by decreasing finishing time: d, e, a, c, b.

e

dc

b

aG

Run DFS on G (use above order from GR): {d, e}, {a, b, c}.

References

I followed lecture notes by Umesh Vazirani in the preparation of
these slides.

