Longest Common Subsequence

Andreas Klappenecker

Subsequences

Suppose you have a sequence X = < X;,X,,..., X, of elements over a
finite set S.

A sequence Z = < z,,Z,,..,z2,> over S is called a subsequence of X if
and only if it can be obtained from X by deleting elements.

Put differently, there exist indices ixi, <...<i, such that

Za - Xia

for all a in the range 1<= a <= k.

Common Subsequences

Suppose that X and Y are two sequences over a set S.
We say that Z is a common subsequence of X and Y if and only if
* Z is a subsequence of X

* Z is a subsequence of Y

The Longest Common
Subsequence Problem

Given two sequences X and Y over a set S, the longest
common subsequence problem asks to find a common
subsequence of X and Y that is of maximal length.

Naive Solution

Let X be a sequence of length m,
and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y,
and return the longest common subsequence found.

There are 2m subsequences of X. Testing a sequences whether or not
it is a subsequence of Y takes O(n) time. Thus, the naive algorithm
would take O(n2m) time.

Dynamic Programming

Let us try to develop a dynamic programming solution fo the LCS
problem.

Prefix

Let X = < X.,X,,...,.X..> be a sequence.

We denote by X the sequence
X = < X Xpee, Xi>

and call it the ith prefix of X.

LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of longest common
subsequences of X and Y.

Optimal Substructure

Let X = < X, X500, X >
and Y =< vy.,Y,,..Y,> be two sequences.
Let Z = < z,,2,,...,.2,> is any LCS of X and Y.

a) If x_=y. then certainly x_=vy_ =2z

n

and Z,_, is in LCS(X_, , Y,)

Optimal Substructure (2)

Let X = < X, X500, X >
and Y =< vy.,Y,,..Y,> be two sequences.
Let Z =< 2,z,,..2,> is any LCS of X and Y

b) If x_<> vy, then x_<> z, implies that Z is in LCS(X__, , Y)

m-1 /

c) If x < vy, then y < z implies that Z is in LCS(X, Y, ;)

Overlapping Subproblems

If x =y then we solve the subproblem to find an element in

LCS(X_ ., , Y.,) and append x_

m-1 /

If x <>y, then we solve the two subproblems of finding elements in

LCS(X., , ¥) and LCS(X.)

m-1 /

and choose the longer one.

Recursive Solution

Let X and Y be sequences.

Let cli,j] be the ler}g‘rh of an element in LCS(X, Y).

0 + if i=0 or j=0

Y4

- SIELELE - ifijp0and x =y,

_

-
ALY - ¢ 0o,

cli,j] = N

Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of length m and Y of
length n, we do the following:

-Initialize first row and first column of ¢ with O.
Calculate c[1,j] for 1 <= j <= n,

c[2,j] for 1 <= j <=n
‘Return c[m,n]

-Complexity O(mn).

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array ¢ an array b pointing to the optimal
subproblem chosen when computing cli,j].

http://wordaligned.org/articles/longest-common-subsequence

m < length[X]
n < length[Y]

for 1 = 1 Eo'm do
cli,0}) == 0

for 7 == 1L to n do
cl[O0;] < 0O

L.CS (X, Y)

L.CS (X, Y)

for 12 < 1 to m do

for 3 < 1 to n do
1 X. = V.

c[i, j}Je— c[i-1, j-11+1
3

b[l, - \\D//
else
if c[i-1, j] = e[i, j-1]
1, 9] dpaeL,
b l, J - \\U//

_else b
cli, 3] = cliy 3-1]
b[l, J] . \\L//

Greedy Algorithms

There exists a greedy solution to this problem that can be
advantageous when the size of the alphabet S is small.

