Longest Common Subsequence

Andreas Klappenecker

Subsequences

Suppose you have a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ of elements over a finite set S.

A sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.

Put differently, there exist indices i1<i2 <...<ik such that

$$Z_a = X_{i_a}$$

for all a in the range 1<= a <= k.

Common Subsequences

Suppose that X and Y are two sequences over a set S.

We say that Z is a common subsequence of X and Y if and only if

- · Z is a subsequence of X
- · Z is a subsequence of Y

The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

Naïve Solution

Let X be a sequence of length m,

and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y, and return the longest common subsequence found.

There are 2^m subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes O(n) time. Thus, the naïve algorithm would take $O(n2^m)$ time.

Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.

Prefix

Let $X = \langle x_1, x_2, ..., x_m \rangle$ be a sequence.

We denote by X_i the sequence

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$

and call it the ith prefix of X.

LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of longest common subsequences of X and Y.

Optimal Substructure

Let
$$X = \langle x_1, x_2, ..., x_m \rangle$$

and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.
Let $Z = \langle z_1, z_2, ..., z_k \rangle$ is any LCS of X and Y.
a) If $x_m = y_n$ then certainly $x_m = y_n = z_k$
and Z_{k-1} is in LCS(X_{m-1} , Y_{n-1})

Optimal Substructure (2)

Let
$$X = \langle x_1, x_2, ..., x_m \rangle$$

and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, ..., z_k \rangle$ is any LCS of X and Y

- b) If $x_m \leftrightarrow y_n$ then $x_m \leftrightarrow z_k$ implies that Z is in LCS(X_{m-1} , Y)
- c) If $x_m \leftrightarrow y_n$ then $y_n \leftrightarrow z_k$ implies that Z is in LCS(X, Y_{n-1})

Overlapping Subproblems

```
If x_m = y_n then we solve the subproblem to find an element in LCS(X_{m-1}, Y_{n-1}) and append x_m
```

If $x_m \leftrightarrow y_n$ then we solve the two subproblems of finding elements in

$$LCS(X_{m-1}, Y_n)$$
 and $LCS(X_m, Y_{n-1})$

and choose the longer one.

Recursive Solution

Let X and Y be sequences.

Let c[i,j] be the length of an element in LCS(X_i , Y_j).

)

• if i=0 or j=0

c[i-1,j-1]+1

• if i,j>0 and $x_i = y_j$

max(c[i,j-1],c[i-1,j])

if i,j>0 and x_i <> y_j

c[i,j] =

Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of length m and Y of length n, we do the following:

- ·Initialize first row and first column of c with 0.
- •Calculate c[1,j] for $1 \le j \le n$,
 - c[2,j] for 1 <= j <= n
- •Return c[m,n]
- ·Complexity O(mn).

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing c[i,j].

Animation

http://wordaligned.org/articles/longest-common-subsequence

LCS(X,Y)

```
m ← length[X]

n ← length[Y]

for i ← 1 to m do
    c[i,0] ← 0

for j ← 1 to n do
    c[0,j] ← 0
```

LCS(X,Y)

```
for i ← 1 to m do
   for j ← 1 to n do
   if x<sub>i</sub> = y<sub>j</sub>
   c[i, j] ← c[i-1, j-1]+1
   b[i, j] ← "D"
      else
c[i, j] ← c[i, j-1]
b[i, j] ← "L"
```

Greedy Algorithms

There exists a greedy solution to this problem that can be advantageous when the size of the alphabet S is small.