
Dynamic Programming
Andreas Klappenecker

[partially based on slides by Prof. Welch]

Dynamic Programming

• Optimal substructure

• An optimal solution to the problem contains within it optimal
solutions to subproblems.

• Overlapping subproblems

• The space of subproblem is “small” so that the recursive
algorithm has to solve the same problems over and over.

Giving Optimal Change

Motivation

We have discussed a greedy algorithm for giving change.
However, the greedy algorithm is not optimal for all
denominations.

Can we design an algorithm that will give the minimum
number of coins as change for any given amount?

Answer: Yes, using dynamic programming.

Dynamic Programming Task

For dynamic programming, we have to find some subproblems that
might help in solving the coin-change problem.

Ideas:

 Vary amount

 Restrict the available coins

Initial Set Up

Suppose we want to compute the minimum number of coins with values

 v[1]>v[2]>…>v[n]=1

to give change for an amount C.

Let us call the (i,j)-problem the problem of computing minimum number of coins
with values

 v[i]>v[i+1]>…>v[n]=1

to give change for an amount 1<= j <= C.

The original problem is the (1,C)-problem.

Tabulation

Let m[i][j] denote the solution to the (i,j)-problem.

Thus, m[i][j] denotes the minimum number of coins to make change
for the amount j using coins with values v[i],…,v[n].

Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1

Table of m[i][j] values:

A Simple Observation

In calculating m[i][j], notice that:

a)Suppose we do not use the coin with value v[i] in the
solution of the (i,j)-problem, then m[i][j] = m[i+1][j]

b)Suppose we use the coin with value v[i] in the solution of
the (i,j)-problem, then m[i][j] = 1 + m[i][j-v[i]]

Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1

Table of m[i][j] values:

Recurrence

We either use a coin with value v[i] in the solution or we don’t.

 m[i+1][j] if v[i]>j

m[i][j] =

 min{ m[i+1][j], 1+m[i][j-v[i]] } otherwise

Dynamic_Coin_Change(C,v,n)

 allocate array m[1..n][0..C];

 for(i = 0; i<=C, i++)

 m[n][i] = i; // make change for amount i using coins of value v[n]=1.

 for(i=n-1; i=>1; i--) { // successively allow a larger number coin values

 for(j=0; j<=C; j++) { // calc values of the array.

 if(v[i]>j || m[i+1][j]<1+m[i][j – v[i]])

 m[i][j] = m[i+1][j]; // large coin does not help

 else m[i][j] = 1+m[i][j –v[i]]; //

 }

 }

 return &m;

Question

The previous algorithm allows us to find the minimum number of
coins.

How can you modify the algorithm to actually compute the change
(i.e., the multiplicities of the coins)?

