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Dynamic Programming

• Optimal substructure


• An optimal solution to the problem contains within it optimal 
solutions to subproblems.


• Overlapping subproblems


• The space of subproblem is “small” so that the recursive 
algorithm has to solve the same problems over and over.



Giving Optimal Change



Motivation

We have discussed a greedy algorithm for giving change. 
However, the greedy algorithm is not optimal for all 
denominations. 


Can we design an algorithm that will give the minimum 
number of coins as change for any given amount? 


Answer: Yes, using dynamic programming. 



Dynamic Programming Task

For dynamic programming, we have to find some subproblems that 
might help in solving the coin-change problem. 


Ideas:


 Vary amount


 Restrict the available coins



Initial Set Up

Suppose we want to compute the minimum number of coins with values 


 v[1]>v[2]>…>v[n]=1


to give change for an amount C. 


Let us call the (i,j)-problem the problem of computing minimum number of coins 
with values 


 v[i]>v[i+1]>…>v[n]=1


to give change for an amount 1<= j <= C. 


The original problem is the (1,C)-problem.



Tabulation

Let m[i][j] denote the solution to the (i,j)-problem. 


Thus, m[i][j] denotes the minimum number of coins to make change 
for the amount j using coins with values v[i],…,v[n].


 



Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1


Table of m[i][j] values: 




A Simple Observation

In calculating m[i][j], notice that:


a)Suppose we do not use the coin with value v[i] in the 
solution of the (i,j)-problem, then m[i][j] = m[i+1][j]


b)Suppose we use the coin with value v[i] in the solution of 
the (i,j)-problem, then       m[i][j] = 1 + m[i][ j-v[i] ]



Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1


Table of m[i][j] values: 




Recurrence

We either use a coin with value v[i] in the solution or we don’t. 


                m[i+1][j]     if v[i]>j


m[i][j] =   


              min{ m[i+1][j], 1+m[i][ j-v[i] ] } otherwise



Dynamic_Coin_Change(C,v,n)


 allocate array m[1..n][0..C]; 


 for(i = 0; i<=C, i++) 


  m[n][i] = i;  // make change for amount i using coins of value v[n]=1. 


 for(i=n-1; i=>1; i--) { // successively allow a larger number coin values


  for(j=0; j<=C; j++) { // calc values of the array. 


   if( v[i]>j || m[i+1][j]<1+m[i][j – v[i]] )  


    m[i][j] = m[i+1][j]; // large coin does not help


   else m[i][j] = 1+m[i][j –v[i]]; // 


           }


        } 


     return &m;



Question

The previous algorithm allows us to find the minimum number of 
coins. 


How can you modify the algorithm to actually compute the change 
(i.e., the multiplicities of the coins)? 


