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Post’s Correspondence Problem

Given: A finite alphabet A, a finite set of pairs (x,y) of strings over 
the alphabet A. 


Goal: Find a string over the alphabet A that can be composed in 
two different ways: 


 - by concatenating strings x1x2…xn from the first components 


- by concatenating strings y1y2…yn from the second components 


of a sequence (x1,y1), (x2,y2),  … , (xn,yn) of the given pairs. 



PCP Example 1
Given: Alphabet A={a,b}, P = { (bab, a), (ab, abb), (a, ba) } 


Solution: abbaba


x2 x1 x3 = ab || bab || a


y2 y1 y3 = abb || a || ba


Important: You need to select a sequence of pairs from P


Projecting on first components must be the same as projecting on 
the second components. Reordering is not allowed. 



PCP Exercise

Given: Set of pairs P = { (1, 111), (10111,10), (10,0) } over A={0,1}


Find a solution to Post’s correspondence problem. 



Solution

Given: Set of pairs P = { (1, 111), (10111,10), (10,0) } over A={0,1}


Find a solution to Post’s correspondence problem. 


Solution: (2,1,1,3) 


x2 x1 x1 x3 = 10111 || 1 || 1 || 10 = 101111110


y2 y1 y1 y3 = 10 || 111 || 111 || 0 = 101111110



PCP Example

The Post’s correspondence problem with 


P = { (001,0), (01,011), (01,101), (10,001) } over A = {0,1}


has a solution, but the smallest requires n=66 words!




Main Result

Theorem: The Post’s correspondence problem is undecidable when 
the alphabet has at least two elements. 


Idea of the proof: Reduce the halting problem onto the Post’s 
correspondence problem. This is often done via an intermediate 
step, where a RAM machine with a single register is used. 




Context Free Grammars

Problem: Is a given context-free grammar G unambiguous? 


[A context-free grammar G is unambiguous iff every string s in 
L(G) has a unique left-most derivation. The reference grammars 
given for many programming languages are often ambiguous (e.g. 
dangling else problem). Sometimes formal languages have 
ambiguous and unambiguous grammars.] 


This problem is undecidable. One can reduce the PCP problem to 
this one. 



Example

The regular language { 𝜖, a, aa, aaa, aaaa, aaaaa, … } 


Ambiguous grammar: A -> aA | Aa | 𝜖


Unambiguous grammar: A -> aA | 𝜖




Example 2
The context free grammar A -> A + A | A - A | a


is ambiguous, since a + a + a has two different left-most 
derivations.


A -> A + A -> a + A -> a + A + A -> a + a + A -> a + a + a


and


A -> A + A -> A + A + A -> … -> a + a + a


(replacing left-most nonterminal A by A+A) 



Example 3 (Dangling Else)
Statement = if Condition then Statement |!
            if Condition then Statement else Statement  
! ! ! ! ! ! | …!
!
The following statement can be parsed in two different ways: !
! if a then if b then s else s2!
We can parse it as !
! if a then (if b then s) else s2!
or as 

! if a then (if b then s else s2)!
!
This is an example of an ambiguous language. 



Chomsky Hierarchy
The classification of formal grammars by Noam Chomsky imposes 
restrictions on the production rules u -> v: 


(0) no restrictions


(1) no shortening: |u| <= |v| 


(2) context free: u is a nonterminal symbol, v ≠ 𝜖


(3) (right) regular: u is a nonterminal symbol, v is a single terminal 
symbol, or a nonterminal symbol followed by a terminal symbol, 
start symbol can produce the empty string. 



Recursive Languages

A formal language is called recursive if and only if there exists a 
Turing machine such that on input of a  finite input string


- halts and accept if the string is in the language, 


- and halts and rejects otherwise. 


Recursive languages correspond to decidable problems. 


https://en.wikipedia.org/wiki/Literal_string


Examples and Counterexamples

Every context-sensitive grammar is recursive. 


There exist recursive languages that are not context-sensitive. 


The language corresponding to the Halting problem is not recursive. 



Recursive Enumerable

The languages that are accepted by a Turing machine are called 
recursively enumerable languages (or semi-decidable languages). 


There exists a TM that accepts yes instances, but might reject or 
loop forever on input of no instance.


Examples: The language of the Halting Problem, PCP


The type-0 formal languages are precisely the recursively 
enumerable languages. 



Recursive vs. Recursively Enumerable

Theorem: If a formal language is recursive, then it is recursively 
enumerable.


Proof. This follows from the definitions. 


!

The converse does not hold. Example: PCP is recursively 
enumerable, but not recursive (decidable). 



Not Recursively Enumerable Languages

Theorem. There exist formal languages that are not recursively 
enumerable. 


Proof. Let S = {0,1}* be the set of all finite binary strings. This is a 
countably infinite set. 


Consider the formal language P(S) of all sets of finite binary 
strings over the alphabet with symbols 0, 1, {, }


This language is uncountable by Cantor’s theorem, as |S|<|P(S)|, so 
there cannot exist a Turing machine accepting P(S). 


