
Undecidable Problems
Andreas Klappenecker

Post’s Correspondence Problem

Given: A finite alphabet A, a finite set of pairs (x,y) of strings over
the alphabet A.

Goal: Find a string over the alphabet A that can be composed in
two different ways:

 - by concatenating strings x1x2…xn from the first components

- by concatenating strings y1y2…yn from the second components

of a sequence (x1,y1), (x2,y2), … , (xn,yn) of the given pairs.

PCP Example 1
Given: Alphabet A={a,b}, P = { (bab, a), (ab, abb), (a, ba) }

Solution: abbaba

x2 x1 x3 = ab || bab || a

y2 y1 y3 = abb || a || ba

Important: You need to select a sequence of pairs from P

Projecting on first components must be the same as projecting on
the second components. Reordering is not allowed.

PCP Exercise

Given: Set of pairs P = { (1, 111), (10111,10), (10,0) } over A={0,1}

Find a solution to Post’s correspondence problem.

Solution

Given: Set of pairs P = { (1, 111), (10111,10), (10,0) } over A={0,1}

Find a solution to Post’s correspondence problem.

Solution: (2,1,1,3)

x2 x1 x1 x3 = 10111 || 1 || 1 || 10 = 101111110

y2 y1 y1 y3 = 10 || 111 || 111 || 0 = 101111110

PCP Example

The Post’s correspondence problem with

P = { (001,0), (01,011), (01,101), (10,001) } over A = {0,1}

has a solution, but the smallest requires n=66 words!

Main Result

Theorem: The Post’s correspondence problem is undecidable when
the alphabet has at least two elements.

Idea of the proof: Reduce the halting problem onto the Post’s
correspondence problem. This is often done via an intermediate
step, where a RAM machine with a single register is used.

Context Free Grammars

Problem: Is a given context-free grammar G unambiguous?

[A context-free grammar G is unambiguous iff every string s in
L(G) has a unique left-most derivation. The reference grammars
given for many programming languages are often ambiguous (e.g.
dangling else problem). Sometimes formal languages have
ambiguous and unambiguous grammars.]

This problem is undecidable. One can reduce the PCP problem to
this one.

Example

The regular language { 𝜖, a, aa, aaa, aaaa, aaaaa, … }

Ambiguous grammar: A -> aA | Aa | 𝜖

Unambiguous grammar: A -> aA | 𝜖

Example 2
The context free grammar A -> A + A | A - A | a

is ambiguous, since a + a + a has two different left-most
derivations.

A -> A + A -> a + A -> a + A + A -> a + a + A -> a + a + a

and

A -> A + A -> A + A + A -> … -> a + a + a

(replacing left-most nonterminal A by A+A)

Example 3 (Dangling Else)
Statement = if Condition then Statement |!
 if Condition then Statement else Statement
! ! ! ! ! ! | …!
!
The following statement can be parsed in two different ways: !
! if a then if b then s else s2!
We can parse it as !
! if a then (if b then s) else s2!
or as

! if a then (if b then s else s2)!
!
This is an example of an ambiguous language.

Chomsky Hierarchy
The classification of formal grammars by Noam Chomsky imposes
restrictions on the production rules u -> v:

(0) no restrictions

(1) no shortening: |u| <= |v|

(2) context free: u is a nonterminal symbol, v ≠ 𝜖

(3) (right) regular: u is a nonterminal symbol, v is a single terminal
symbol, or a nonterminal symbol followed by a terminal symbol,
start symbol can produce the empty string.

Recursive Languages

A formal language is called recursive if and only if there exists a
Turing machine such that on input of a finite input string

- halts and accept if the string is in the language,

- and halts and rejects otherwise.

Recursive languages correspond to decidable problems.

https://en.wikipedia.org/wiki/Literal_string

Examples and Counterexamples

Every context-sensitive grammar is recursive.

There exist recursive languages that are not context-sensitive.

The language corresponding to the Halting problem is not recursive.

Recursive Enumerable

The languages that are accepted by a Turing machine are called
recursively enumerable languages (or semi-decidable languages).

There exists a TM that accepts yes instances, but might reject or
loop forever on input of no instance.

Examples: The language of the Halting Problem, PCP

The type-0 formal languages are precisely the recursively
enumerable languages.

Recursive vs. Recursively Enumerable

Theorem: If a formal language is recursive, then it is recursively
enumerable.

Proof. This follows from the definitions.

!

The converse does not hold. Example: PCP is recursively
enumerable, but not recursive (decidable).

Not Recursively Enumerable Languages

Theorem. There exist formal languages that are not recursively
enumerable.

Proof. Let S = {0,1}* be the set of all finite binary strings. This is a
countably infinite set.

Consider the formal language P(S) of all sets of finite binary
strings over the alphabet with symbols 0, 1, {, }

This language is uncountable by Cantor’s theorem, as |S|<|P(S)|, so
there cannot exist a Turing machine accepting P(S).

