Finding the Second Largest
Element

Andreas Klappenecker

Problem

Given a set of n elements from a totally ordered domain, our goal
is to find the second largest element my.

How many queries are needed to determine m;?

Upper Bound

We can compare the elements pairwise in a fournament style.

If x <y, then we say that y wins.

- If an element was never compared
to the largest element, then it cannot
be second largest (e.g. az).

- Find second largest among the ones
who have lost to the largest.

- So<=(n-1) + [Ilgn | - 1 comparisons

Lower Bound

Any algorithm to determine the second largest element of a totally
ordered set n elements needs at least (n-2) + [Ig n | comparisons in

the worst case.

Lower Bound

Let m; be the largest element and m. the second largest element.

An algorithm to determine m; needs to find the largest element m; for
otherwise an adversary would be able to exchange m; for m..

Furthermore, the n-2 elements below mz must be identified by the
algorithm, meaning that they must have lost in comparison to m; or
some element below m.. This means that there are n-2 comparisons that
do not involve m;.

It remains to show that an adversary can force any algorithm to do at
least [Ilg n| comparisons with the largest element m.

Adversary 1

Our goal is to show that an algorithm Z needs to make Ilg n or
more comparisons with the largest element.

We construct an adversary that answers comparisons “Is a <= b?”
consistent with a fotal order of the n elements.

For each element x, we let K(x) denote the set of elements vy
known to Z that satisfy y <= x. Initially K(x) = {x}.

The adversary uses previous query history of Z and K(a) and K(b)
to create answer for questions such as “Is a <= b".

Adversary 2

The adversary behaves as follows:

- If "Is a <= b?"” was asked before, give same answer.

- If "Is a <= b?"” was not asked before, then answer
o yes if |[K(a)l <= [K(b)l. Update K(b) := K(a) u K(b)

@ no, if |[K(a)l > IK(b)l. Update K(a) := K(a) u K(b)

Adversary 3

Let S be the totally ordered domain of n elements.
- At the beginning [K(a)l = 1 holds for all a in S.
- For each query involving a, |K(a)l can at most double.

- Since Z needs to determine largest element, |[K(m;)l = n must hold
at the end.

- The number k of queries involving m; satisfies 2¢>=n, so k >= Ig n

and since k must be an integer, we have k >= [Ign].

Conclusions

Any algorithm to determine the second largest element of a totally
ordered set n elements needs at least (n-2) + [Ig n | comparisons in

the worst case.

We have given an optimal algorithm that attains this lower bound.

