Deterministic and Randomized
Quicksort

Andreas Klappenecker

Overview

@ Deterministic Quicksort
@ Modify Quicksort to obtain better asymptotic bound
@ Linear-time median algorithm

@ Randomized Quicksort

Deterministic Quicksort

Quicksort(A,p,r)
if p<r then
:= Partition(A,p,r); // rearrange Alp..r] in place
Quicksort(A, p,g-1);
Quicksort(A,q+1,r);

Divide-and-Conquer

The design of Quicksort is based on the divide-and-conquer paradigm.

a) Divide: Partition the array A[p..r] into two (possibly empty) subarrays
Alp..g-1] and A[g+l,r] such that

o Alx] <= Alq] for all x in [p..g-1]

o A[x] > Alq] for all x in [g+1,r]
b) Conquer: Recursively sort Alp..g-1] and Alg+1,r]

c) Combine: nothing to do here

Partition

el Pl] fr

Select pivot (orange element) and rearrange:

o larger elements to the left of the pivot (red)

@ elements not exceeding the pivot to the right (yellow)

Partition

Partition(A,p,r)
x := Alr]; // select rightmost element as pivot
| := p-1;
for j = p to r-14
if A[j] <= x then i := i+l; swap(Alil, ALjl):
: |
swap(Ali+1],Alr]);

return i+l;

Partition - Loop - Example

EANERERER
NN

After the loop, the partition routine swaps the leftmost element of the right
partition with the pivot element:

gel (i1 | [[Ir

swap(Ali+1],Alr])

—EE----

now recursively sort yellow and red parts.

Worst-Case Partitioning

The worst-case behavior for quicksort occurs on an input of length
n when partitioning produces just one subproblem with n-1
elements and one subproblem with O elements.

Therefore the recurrence for the running time T(n) is:
HOEREERIOEN OERIEEN OB (D)

Perhaps we should call this algorithm pokysort?

“Better” Quicksort and Linear
Median Algorithm

Best-case Partitioning

Best-case partitioning:

If partition produces two subproblems that are roughly of the same size,
then the recurrence of the running time is

T(n) <= 2T(n/2) + 6(n)
so that T(n) = O(n log n)
Can we achieve this bound?

Yes, modify the algorithm. Use a linear-time median algorithm to find
median, then partition using median as pivot.

Linear Median Algorithm

Let A[l..n] be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each group.
[You can do that with 6 comparisons]

- Make an array U[l..n/5] of the medians and find the median m of U by
recursively calling the algorithm.

- Partition the array A using the median-of-medians m to find the rank
of min A. If m is of larger rank than the median of A, eliminate all
elements > m. If m is of smaller rank than the median of A, then
eliminate all elements <= m. Repeat the search on the smaller array.

Linear-Time Median Finding

How many elements do we eliminate in each round?

The array U contains n/5 elements. Thus, n/10 elements of U are larger
(smaller) than m, since m is the median of U . Since each element in U is a
median itself, there are 3n/10 elements in A that are larger (smaller) than m.

Therefore, we eliminate (3/10)n elements in each round.
Thus, the time T(n) to find the median is
T(n) <= T(n/5) + T(7n/10) + 6n/5.

// median of U, recursive call, and finding medians of groups

Solving the Recurrence

Suppose that T(n) <= cn (for some ¢ to be determined later)
T(n) <= ¢(n/5) + c(7n/10)+6n/5= ¢c(9n/10)+6n/5

If this is to be <= ¢cn, then we need to have
c(9n/10)+12n/10 <= cn or 12 <= ¢

Suppose that T(1) = d. Then choose ¢ = max{12,d}.

An easy proof by induction yields T(n) <= cn.

Goal Achieved?

We can accomplish that quicksort achieves O(n log n) running time,

if we use the linear-time median finding algorithm to select the
pivot element.

Unfortunately, the constant in the big Oh expression becomes
large, and quicksort looses some of its appeal.

Is there a simpler solution?

Randomized Quicksort

Randomized Quicksort

Randomized-Quicksort(A,p,r)
if p<r then
:= Randomized-Partition(A,p,r);
Randomized-Quicksort(A, p,q-1);

Randomized-Quicksort(A,p+1,r);

Partition

Randomized-Partition(A,p,r)
i := Random(p,r);
swap(A[i]Alr]);
Partition(A,p,r);

Almost the same as Partition, but now the pivot element is not the
rightmost element, but rather an element from A[p..r] that is chosen
uniformly at random.

Goal

@ The running fime of quicksort depends mostly on the number of

comparisons performed in all calls to the Randomized-Partition
routine.

@ Let X denote the random variable counting the number of
comparisons in all calls fo Randomized-Partition.

Notations

Let z;denote the i-th smallest element of A[l..n].
Thus A[l..n] sorted is <z;, z2, ... , Zn >.

Let Z;; = {z;, .., z;} denote the set of elements between z; and z;,
including these elements.

Xij = I{ Z; IS compared to ZJ'}.

Thus, X;is an indicator random variable for the event that the i-th
smallest and the j-th smallest elements of A are compared in an
execution of quicksort.

Number of Comparisons

Since each pair of elements is compared at most once by quicksort, the
number X of comparisons is given by

Ve 1% ol
X=), 2 Xy
i=1 j=i+1

Therefore, the expected number of comparisons is

X = 2_: Z Bl Xe— E_: Z Pr|z; is compared to z;]

i=1 j=i+1 i=1 j=i+1

&3
@

When do we compare?

When do we compare z; to z;?
Suppose we pick a pivot element in Z;; = {z, ..., zj}.

If zi < X < zj then z; and z; will land in different partitions and will
never be compared afterwards.

Therefore, zi and z; will be compared if and only if the first
element of Z;; fo be picked as pivot element is contained in the set

{Zi,Zj}.

Probability of Comparison

Pr|z; or z; is the first pivot chosen from Z;;]|
= Pr|z; is the first pivot chosen from Z,]

+ Pr|z; is the first pivot chosen from Z;,]
1 1 2

T il ey L TR T

Expected Number of Comparisons

n—1 n

2
S b ¥ G g

i=1 j—i+1

e 24241~c+1

=133
n—1 n

Conclusion

It follows that the expected running time of Randomized-
Quicksort is O(n log n).

It is unlikely that this algorithm will choose a terribly unbalanced
partition each time, so the performance is very good almost all
the time.

