
3SAT
Andreas Klappenecker

[partially based on slides by Jennifer Welch]

3SAT

Given a boolean function in conjunctive normal form such that
every clause contains exactly three literals, decide whether the
formula is satisfiable.

[This a special case of SAT]

Proving NP-Completeness

How do you prove that a decision problem L is NP-complete?

(1) Show that L is in NP.

(2.a) Choose an appropriate known NP-complete language L'.

(2.b) Show L' ≤p L

!

Proof Strategy

(1) 3SAT is in NP, since we can check in polynomial time
whether a given truth assignment evaluates to true.

(2.a) Choose SAT as a known NP-complete problem.

(2.b) Describe a reduction from SAT inputs to 3SAT inputs

! computable in polynomial time

! SAT input is satisfiable iff constructed 3SAT input is satisfiable

General Idea of the Reduction

We're given an arbitrary CNF formula C = c1∧ c2 ∧ … ∧ cm over set of
variables, where each ci is a clause (a disjunction of literals).

We will replace each clause ci with a conjunction of clauses ci', and may
use some extra variables. Each clause in ci' will have exactly 3 literals. The
transformed input will be conjunction of all the clauses in all the ci'.

Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk

Case 1: k = 1. Use extra variables yi
1 and yi

2. Replace ci with 4 clauses:

(z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).

!

!

Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk

Case 2: k = 2. Use extra variable yi
1. Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).

!

!

Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk

Case 3: k = 3. No extra variables are needed.

Keep ci: (z1 ∨ z2 ∨ z3)

!

!

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

Case 4: k > 3. Use extra variables yi
1, …, yi

k-3. Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)

 ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ...

 ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

Text

Polynomial Time Reduction

!

!

Each new formula is at most a constant times larger than the
original formula, and the translation is straightforward. Therefore,
the reduction is polynomial time.

!

!

Correctness of the Reduction

Show that CNF formula C is satisfiable iff the 3-CNF
formula C' constructed is satisfiable.

=>: Suppose that C is satisfiable. We need to construct a
satisfying truth assignment for C'.

For variables in C’ that are already in C, we use same truth
assignments as for C.

How should we assign T/F to the new variables?

Truth Assignment for New Variables
Let ci = z1∨ z2 ∨ … ∨ zk

Case 1: k = 1. Use extra variables yi
1 and yi

2. Replace ci with 4 clauses:

(z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).

!

!
Assign yi’s with arbitrary values, as z1 is true

Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk

Case 2: k = 2. Use extra variable yi
1. Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).

!

!

Assign yi’s with arbitrary values, as z1 ∨ z2 is true

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

Case 3: k = 3. No extra variables are needed.

Keep ci: (z1 ∨ z2 ∨ z3)

!

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

Case 4: k > 3. Use extra variables yi
1, …, yi

k-3. Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)

 ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ...

 ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

If z1 or z2 is true, set all yi’s to
false, so all later clauses have a

true literal.

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

Case 4: k > 3. Use extra variables yi
1, …, yi

k-3. Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)

 ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ...

 ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

If zk-1 or zk is the first true literal
of ci, set all yi’s to true, so all

earlier clauses have a true literal.

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

Case 4: k > 3. Use extra variables yi
1, …, yi

k-3. Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)

 ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ...

 ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4) ⋀ (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is in between,
set all earlier yi's to true and all
later yi's to false.

Correctness of Reduction

<=: Suppose the newly constructed 3SAT formula C' is
satisfiable. We must show that the original SAT formula C
is also satisfiable.

Use the same satisfying truth assignment for C as for
C' (ignoring new variables).

Show each original clause has at least one true literal in it.

Original Clause is True
Let ci = z1∨ z2 ∨ … ∨ zk

Case 1: k = 1. Use extra variables yi
1 and yi

2. Replace ci with 4 clauses:

ci’ = (z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).

!

!

If ci’ is true, then ci = z1 must be true, since
one pair of literals in yi1 and yi2 must be true

Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk

Case 2: k = 2. Use extra variable yi
1. Replace ci with 2 clauses:

ci’= (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).

!

!

If ci’ is true, then ci = z1 ∨ z2 must be true

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

Case 3: k = 3. No extra variables are needed.

Keep ci: (z1 ∨ z2 ∨ z3)

!

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

Case 4: k > 3. Use extra variables yi
1, …, yi

k-3. Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)

 ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ...

 ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4) ⋀ (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

Suppose that there is a valuation
such that ci’ is true and ci is false.
Then yi

k must be true for all k, so the
last clause in ci’ must be false,
contradiction.

Conclusions

We have shown that

3SAT is in NP

there exists a polynomial time reduction from SAT to 3SAT.

Therefore, 3SAT is NP-complete.

