Amortized Analysis of a Binary
Counter

Andreas Klappenecker



Binary Counter

A binary k-bit counter can be implemented with a k-element binary
array. The counter is initially O.

The only operation is increment(A), which adds 1 to the current
number in the counter.

The increment operation can be implemented using the grade-school
ripple-carry algorithm.



Aggregate Method

The worst case running time occurs when all k bits are flipped, so
increment(A) has running time O(K).

In a sequence of n increment operations, few increments will cause
that many bits to flip. Indeed,

bit O flips with every increment

bit 1 flips with every 2" increment

bit 2 flips with every 4™ increment, ...



Aggregate Method

Total number of bit flips in n increment operations is

n+n/2+n/4+ .. +n/2%<n(/(1-1/2))= 2n
So total cost of the sequence is O(n).

Amortized cost per operation is O(n)/n = O(1).



Accounting Method for k-Bit

The actual cost for an increment operation is the number of bits
flipped.

We can assign an amortized cost of 2 for each increment operation.

The main idea is to use 1 to flip the bit from O fo 1 and store 1
credit to flip it back to O later.



Accounting Method Fork-Bn‘ Counter




Accounting Method

All changes from 1 to O are paid for with previously stored credit
(never go into red)

The amortized time per operation is O(1)



Potential Method

Potential Function Bi = number of 1s in counter after i increment.
Suppose ith operation resets t; bits.

Actual cost: ¢j = T + 1

Notice that Bj <= Bi.; - tj + 1

-ifBi =0, thenBi,; =t =K

-ifB >0, thenBi=8B,_;; - t; + 1



Potential Method

Difference in Potentials:
Bi - Bi.1 <= (Bi_l - Ti + 1) - By =-ti+1
Amortized cost: ¢ci+ Bi-Bi.;j <=1 +1 -1 +1=2

Advantage of the potential method: We can use it to analyze
counters that do not start from O, see CLRS.



