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The Problem

Can we make the following boolean formula true? 

(¬x∨y)∧(¬y∨z)∧(z∨y) 

!



Terminology

A boolean variable is a variable that can be assigned the values 
true (T) or false (F). 


A literal is a boolean variable or the negation of a boolean variable.


A clause is a disjunction (or) of literals.


A boolean formula is said to be in conjunctive normal form if and 
only if it is a conjunction (and) of clauses. 



k-CNF

A boolean formula is in k-conjunctive normal form or k-CNF if and 
only if its is in conjunctive normal form and each clause contains 
precisely k literals. 




Satisfiability

Given a boolean formula f in k-CNF. The boolean formula is called 
satisfiable if and only if there exists an assignment of truth values 
to the boolean variables in f such that f evaluates to true. 


Example: (¬x∨y)∧(¬y∨z)∧(z∨y) is satisfiable. 

The k-SAT problem is to decide whether a given boolean formula 
in k-CNF is satisfiable or not.  

The problem is difficult if k>2. 



Randomized Algorithm for 2SAT



Monte Carlo Algorithm for 2SAT
Input: Boolean 2-CNF formula f with n variables


Choose an arbitrary truth assignment for the variables in f


Repeat up to 2mn2 times or until f is satisfied


Choose an arbitrary clause that is not satisfied


Choose uniformly at random one of the literals and switch the truth 
assignment of its variable.


if a valid truth assignment has been found then return it 


else return “formula is unsatisfiable”  



Analysis
Suppose that f is a satisfiable boolean 2-CNF formula. 


Let S denote a satisfying assignment of f, 


let Ai denote the truth assignment after the i-th iteration


We denote by Xi the number of truth assignments of variables 
where Ai coincides with S, so Xi counts the number of matches. 


If Xi = n, then the algorithm stops. 




Analysis
If Xi=0, then Xi+1

 = 1. Hence, Pr[ Xi+1=1 | Xi=0 ] = 1.


If 0 < Xi < n, then 


Pr[ Xi+1 = k+1 | Xi = k ] >= 1/2  (the probability that the number of 
matches increases could even be 1). 


Pr[ Xi+1 = k-1 | Xi = k ] <= 1/2 (the probability that the number of 
matches can decrease might even be 0). 


The stochastic process X0, X1, X2, ... is a bit complicated, as it might depend 
on the particular choices of truth assignments in the past, and the fact that 
one or both variables can lead to an improvement. 



Analysis
Let’s compare our complicated stochastic process with a related but potentially 
``slower’’ one: 


Form a Markov chain Y0, Y1, Y2, ... with 


Y0 = X0. 


Pr[ Yi+1=1 | Yi=0 ] = 1


Pr[ Yi+1 = k+1 | Yi = k ] = 1/2


Pr[ Yi+1 = k-1 | Yi = k ] = 1/2


This is a pessimistic version of the stochastic process X0, X1, X2, ...



Random Walk
!

!

!

Let hj denote the expected number of steps to reach n given that you are in 
state j (the mean hitting time). 


hn = 0 


hj = 0.5 hj-1 + 0.5 hj+1 + 1


h0 = 1 + h1

0 1 n2
1/21/2

1/2

1/2

1/2 1/2

1

Solution:

hj+1 = hj + 2j - 1 



Random Walk
!

!

Thus, the expected number of steps to get all n truth assignments correct is 


h0 = 1 + h1 = 1 + 3 + h2 = 1 + 3 + 5 + h3


or h0 = 1+ 3 + 5 + ... + (2n - 1) = n2


hj = n2 - j2
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Conclusion

If the formula f is unsatisfiable, then the algorithm returns 
correctly that f is unsatisfiable. 


If f is satisfiable, then the algorithm returns with probability 1-2-m  
a valid truth assignment. 


[Let Z denote the r.v. counting the number of steps until satisfying 
truth assignment is found. Then Pr[Z>=2n2] <= n2/2n2 =1/2 by 
Markov’s inequality. The algorithm repeats this m times.]



Deterministic Algorithm for 2SAT



2-SAT

The problem 2-SAT can be decided in polynomial time.



Proof (1)

Given our boolean 2-CNF formula f, we construct a graph G as 
follows: 


- For each variable x in f, we create two vertices x and ¬x in G. 


- For each clause (x ⋁ y), we create two edges ¬x -> y and ¬y -> x


We call G the implication graph of f. 




Example

f = (¬x∨y)∧(¬y∨z)∧(z∨y) 

!

!

!
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Strongly Connected Components

Compute the strongly connected components of the implication 
graph G. 


[Recall that the strongly connected components form a directed 
acyclic graph, and can be topologically sorted with partial order ≼


Let C denote the function that assigns to a variable its strongly 
connected component. If x ⇝ y, then C(x)≼C(y). ]




Unsatisfiable f

If there exists a strongly connected component C of G containing a 
variable x and its negation ¬x, then f is unsatisfiable. 


Since x and ¬x are in C, there exists a cycle <x,..., ¬x, ..., x> in G. 


If we assign x to be true, then all variables on the cycle must be 
true, contradicting the fact that ¬x must be false. 


If we assign x to be false, then ¬x must be true, and all variables 
on the cycle must be true, contradicting the fact that x is false. 



Satisfiable f
If C(x) ≠ C(¬x) for all variables in f, then assign


x = true if C(¬x)≺C(x)


x = false if C(x)≺C(¬x)


We claim that f evaluates to true under this truth assignment. 


Seeking a contradiction, let us assume that f evaluates to false 
under this truth assignment. Then there must exist a clause (x∨y) 
in f that evaluates to false, so both x and y must evaluate to false.



Satisfiable f

Since x and y are assigned false, we have by construction 


      C(x)≺C(¬x) and C(y)≺C(¬y).


As G contains the edges ¬x -> y and ¬y -> x, we have 


      C(¬x)≼C(y) and C(¬y)≼C(x). 


Therefore, C(x)≺C(¬x)≼C(y)≺C(¬y)≼C(x), a contradiction. 


Thus, f must evaluate to true as claimed.  



Algorithm

- Create implication graph in adjacency list representation from f in 
linear time


- Calculate strongly connected components in linear time


- Foreach strongly connected component (taken in topological 
order), assign truth values to variables as explained. Again, this can 
be done in linear time. 


=> This is a linear time algorithm!



Conclusions

We showed that there exists a Monte Carlo algorithm for 2SAT 
that can find a satisfying assignment with probability 1-2-m in 
2mn2 steps. 


We showed that there exists a deterministic linear time 
algorithm. 


