Asymptotic Analysis 1: Limits and Asymptotic Equality

Andreas Klappenecker and Hyunyoung Lee

Texas A&M University

15



Motivation

In asymptotic analysis, our goal is to compare a function f(n) with
some simple function g(n) that allows us to understand the order of
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First, let us recall the notion of a limit.




Limit

Given a function f: Ny — R, we say that f converges to the limit
L € R as n — oo, and write

lim f(n) =L,

n—o0

if and only if for each € > 0 there exists an n. € Ny such that
1f(n)—L|l<e

holds for all n > n..
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Limit

Given a function f: Np — R, we say that f tends to o0 as n — o0,

and write
lim f(n) = oo,

n—aoo
if and only if for each real number B there exists an ng € Ny such
that f(n) > B for all n > ng.




Squeeze Theorem

Proposition

Suppose that we are given functions f, g, h: Ny — R such that
there exists a positive integer ny such that for all n = ng, the
inequality chain

holds, and
lim f(n) = L= lim h(n).

n—o0 n—o0

Then lim,_,, g(n) exists and has the same limit

lim g(n) = L.

n—o0




Asymptotic Equality

Let f and g be functions from the set of natural numbers to the set
of real numbers. We write f ~ g and say that f is asymptotically

equal to g if and only if
f
lim (n)

=1
n—o0 g(n)

holds.



Asymptotic Equality

By definition of the limit this means that for each € > 0 there exists
a natural number n, such that

‘f(n)

an)

<€ (1)

holds for all n > n..




Asymptotic Equality

By definition of the limit this means that for each € > 0 there exists
a natural number n, such that

‘f(n)

an)

<€ (1)

holds for all n > n..

One way to interpret the inequality (1) is that two functions f and
g are asymptotically equal if and only if the relative error

(f(n) — g(n))/g(n) between these functions vanishes for large n.
Essentially, this means that the functions f and g have the same
growth for large n.




Harmonic Number

Proposition

The n-th Harmonic number H, = 1 + % S eee aF % Is asymptotically

equal to the natural logarithm In n,

H, ~ Inn.




Proof

Since the inequalities In(n + 1) < H, < 1 + In n hold, dividing by
In n and taking the limit yields for the logarithmic terms
In(n + 1) _ n 1+Inn

im ———= = |lim —— =1 and |lm — =1,

where we used |'Hopital’s rule in the calculation of the first limit.
Thus, it follows from the squeeze theorem for limits that
H,

lim =1,
n—w Inn

which proves that H,, ~ Inn. In other words, the Harmonic
numbers grow like the natural logarithm for large n.
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Stirling’s Approximation to n!

Example
The Stirling approximation yields

nl ~2mn (2>
e
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One advantage of the asymptotic equality ~ is that the expression
can be simplified quite a bit. The next proposition illustrates this in
the case of polynomials.

Proposition

Let p(x) = X1, akx* be a nonzero polynomial of degree m with
real coefficients. Then p(x) is asymptotically equal to its leading
term,

p(x) ~ amx™.




Criterion

Proposition

Let ¢ be a positive real number. Let f be a continuously
differentiable function from the set of positive real numbers to the
set of real numbers such that its derivative f' is monotonic,
nonzero, and satisfies

lim f'(n+c¢)/f'(n) = 1.

n—o0

Then
f(n+c)—f(n) ~cf'(n).




Proof

By the mean value theorem of calculus, there exists a real number 6 in the range
0 < 6 < ¢ such that

f(n+c)—f(n)=(n+c—n)f'(n+0)=cf'(n+9).
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Proof

By the mean value theorem of calculus, there exists a real number 6 in the range
0 < 6 < ¢ such that

f(n+c)—f(n)=(n+c—n)f'(n+0)=cf'(n+9).
If £ is monotonically increasing (or monotonically decreasing), then

cf'(n) (<) f(n+c)—f(n) (<) cf'(n+ c).

= =

14 /15



Proof

By the mean value theorem of calculus, there exists a real number 6 in the range
0 < 6 < ¢ such that

f(n+c)—f(n)=(n+c—n)f'(n+0)=cf'(n+9).
If £ is monotonically increasing (or monotonically decreasing), then

cf'(n) (<) f(n+c)—f(n) (<) cf'(n+ c).

Dividing by cf’(n) yields by assumption

im S0 1 nd gim S+ 0
n— cf’(n) n—x  cf’(n)

=1

14 /15



Proof
By the mean value theorem of calculus, there exists a real number 6 in the range
0 < 6 < ¢ such that
f(n+c)—f(n)=(n+c—n)f'(n+0)=cf'(n+9).
If £ is monotonically increasing (or monotonically decreasing), then

cf'(n) (<) f(n+c)—f(n) (<) cf'(n+ c).

Dividing by cf’(n) yields by assumption

im S0 1 nd gim S+ 0

=1.
n— cf’(n) n—x  cf’(n)

Therefore, by the squeeze theorem for limits, we have
im f(n+1)—f(n)

=1
n—co cf'(n)

Y

which proves our claim.
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Example
Let ¢ be a positive constant. Then

c
vVn+c—+/n~ NG

Indeed, if we set f(x) = 4/x, then f is a continuously differentiable

function on the positive real numbers. Its derivative

f'(x) = 1/(24/x) is nonzero, monotonically decreasing, and satisfies

lim,—. f(n+ ¢)/f(n) = 1. The claim follows from the previous

proposition.




