Algorithmic Problems 2

Andreas Klappenecker
[based on a lecture by Avrim Blum]



Motivation

Suppose that you have a homework assignment consisting of seven
parts A, B, ..., G. Each part has a certain value of points and takes
a certain time to complete. For example,

If you have 15 hours, which parts would you do?



Knapsack

In the knapsack problem, we are given a set of n items, where
each item i is specified by a size s; and a value vi. You are also
given a upper bound S on the total of the sizes (namely, the size
of the knapsack).

Goal: Find a subset of the items of maximum total value such that
the sum of their sizes is at most S.



Problem

Find an (efficient) algorithm to solve the knapsack problem.

[Hint: Write a recursive procedure Value(n, S) that will select the
maximum value among the n items. Assume that the values are
stored in an array v[l..n] and the sizes in a array s[l..n].]






Recursive Algorithm

// Recursive algorithm: either we use the last element or we don’t.
Value(n,S) // S = space left, n = # items still to choose from

{

if (n == 0) return O;
if (s_n > S) result = Value(n-1,S); // can’t use nth item
else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

return result;




We need exponential time, since at each iteration, we have two
recursive calls in the worst (but normal) case.

There are at most O(nS) values!

Now speed up the recursive algorithm! Which algorithm design
method can Yyou use?



Dynamic Programming (Memoization)

Value(n,S)
{
if (n == 0) return O;
if (arr[n] [S] !'= unknown) return arr[n][S]; // <- added this

if (s_n > S) result = Value(n-1,S);

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};
arr [n] [S] = result; // <- and this
return result;




Are We Done Yet?

How can you get the actual items that led to the solution?



The knapsack decision problem (can we find items with value of
value >= v without exceeding the size S?) is NP complete.

Is this a contradiction?



