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Motivation
When we analyze the runtime of algorithms, we simply count the number of 
operations. For example, the following loop

for k = 1 to n do 

  square(k);

where square(k) is a function that has running time T2k2. Then the total number 
of instructions is given by 

where T1 is the time for loop increment and comparison. 

T1(n+ 1) +
n�

k=1

T2k
2



Motivation

The question is how to find closed form representations of sums such 
as 

Of course, you can look up this particular sum. Perhaps you can even 
guess the solution and prove it by induction. However, neither of these 
“methods” are entirely satisfactory. 

n�

k=1

k2



Motivation
The sum

b�

k=a

g(k)

may be regarded as a discrete analogue of the integral

� b

a
g(x)dx

We can evaluate the integral by finding a function
f(x) such that d

dxf(x) = g(x), since the fundamental
theorem of calculus yields

� b

a
g(x)dx = f(b)− f(a).



Motivation
We would like to find a result that is analogous to the 
fundamental theorem of calculus for sums. The calculus of finite 
differences will allow us to find such a result. 

Some benefits: 

Closed form evaluation of certain sums.

The calculus of finite differences will explain the real meaning 
of the Harmonic numbers (and why they occur so often in the 
analysis of algorithms). 



Difference Operator
The discrete version of the differential operator



Difference Operator

Given a function g(n), we define the difference oper-
ator ∆ as

∆g(n) = g(n+ 1)− g(n)

Let E denote the shift operator Eg(n) = g(n + 1),
and I the identity operator. Then

∆ = E − I



Examples
a) Let f(n) = n. Then

∆f(n) = n+ 1− n = 1.

b) Let f(n) = n2. Then

∆f(n) = (n+ 1)2 − n2 = 2n+ 1.

c) Let f(n) = n3.Then

∆f(n) = (n+ 1)3 − n3 = 3n2 + 3n+ 1.



Falling Power

We define the m-th falling power of n as

nm = n(n− 1) · · · (n−m+ 1)

for m ≥ 0. We have

∆nm = mnm−1.



Falling Power
Theorem. We have

∆nm = mnm−1.

Proof. By definition,

∆nm = (n+ 1)n · · · (n−m+ 2)
−n · · · (n−m+ 2)(n−m+ 1)

= mn · · · (n−m+ 2)



Negative Falling Powers
Since

nm/nm−1 = (n−m+ 1),

we have

n2/n1 = n(n− 1)/n = (n− 1),

n1/n0 = n/1 = n

so we expect that

n0/n−1 = n+ 1

holds, which implies that

n−1 = 1/(n+ 1).



Negative Falling Powers 
Similarly, we want

n−1/n−2 = n+ 2

so

n−2 =
1

(n+ 1)(n+ 2)

We define

n−m =
1

(n+ 1)(n+ 2) · · · (n+m)



Exercise
Show that for m ≥ 0, we have

∆n−m = −mn−m−1



Exponentials

Let c �= 1 be a fixed real number. Then

∆cn = cn+1 − cn = (c− 1)cn.

In particular,
∆2n = 2n.



Antidifference Operator
The discrete version of an indefinite integral



Antidifference
A function f(n) with the property that

∆f(n) = g(n)

is called the antidifference of the function g(n).

Example. The antidifference of the function g(n) =
nm is given by

f(n) =
1

m+ 1
nm+1.



Antidifference
Example. The antidifference of the function g(n) =
cn is given by

f(n) =
1

c− 1
cn.

Indeed,

∆f(n) =
1

c− 1
(cn+1 − cn) = cn.



Fundamental Theorem of FDC
Theorem. Let f(n) be an antiderivative of g(n).
Then

b�

n=a

g(n) = f(b+ 1)− f(a).

Proof. We have

b�

n=a

g(n) =
b�

n=a

∆f(n)

=
b�

n=a

(f(n+ 1)− f(n))

=
b+1�

n=a+1

f(n)−
b�

n=a

f(n) = f(b+ 1)− f(a).



Example 1
Suppose we want to find a closed form for the sum

64�

n=5

cn.

An antiderivative of cn is 1
c−1c

n. Therefore, by the
fundamental theorem of finite difference, we have

64�

n=5

cn =
1

c− 1
cn

�����

65

5

=
c65 − c5

c− 1



Antidifference
We are going to denote an antidifference of a function
f(n) by �

f(n) δn.

The δn plays the same role as the dx term in inte-
gration.

For example,

�
nm δn =

1

m+ 1
nm+1

when m �= −1. What about m = −1?



Harmonic Numbers = Discrete ln

We have

�
n
−1 δn = Hn = 1 +

1

2
+ · · ·+ 1

n
.

Indeed,

∆Hn = Hn+1 −Hn =
1

n+ 1
= n

−1
.

Thus, the antidifference of n−1 is Hn.



Linearity

Let f(n) and g(n) be two sequences and a and b two
constants. Then

∆(af(n) + bg(n)) = a∆f(n) + b∆g(n).

Consequently, the antidifferences are linear as well:

�
(af(n) + bg(n)) δn = a

�
f(n) δn+ b

�
g(n) δn



Example
To solve our motivating example, we need to find a
closed form for the sum

n�

k=1

k2.

Since k2 = k2 + k1, an antiderivative of k2 is given
by

�
k2 δk =

�
(k2 + k1)δk =

1

3
k3 +

1

2
k2.

Thus, the sum

n�

k=1

k2 =
1

3
k3
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1

+
1

2
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����
n+1

1

= . . . =
n(2n+ 1)(n+ 1)

6
.



Binomial Coefficients
By Pascal’s rule for binomial coefficients, we have

�
n

k

�
+

�
n

k + 1

�
=

�
n+ 1

k + 1

�
.

Therefore,

∆

�
n

k + 1

�
=

�
n

k

�
.

In other words,

��
n

k

�
δn =

�
n

k + 1

�
.

For example, this shows that
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�
=

�
m+ 1
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�
−

�
0

k + 1

�
=

�
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�
.



Partial Summation



Example

n�

k=0

k2k =?



Product Rule

∆(f(n)g(n)) = f(n+ 1)g(n+ 1)− f(n)g(n)

= f(n+ 1)g(n+ 1)− f(n)g(n+ 1)
+ f(n)g(n+ 1)− f(n)g(n)

= (∆f(n))g(n+ 1) + f(n)(∆g(n))

= (∆f(n))(Eg(n)) + f(n)(∆g(n))



Partial Summation

�
f(n)(∆g(n)) δn = f(n)g(n)−

�
(∆f(n))(Eg(n))



Example
We are now going to find a closed form for the sum

n�

k=0

k2k

Set f(k) = k and ∆g(k) = 2k, so that g(k) = 2k.
Then by partial summation, we have

�n
k=0 k2

k =
�n

k=0 f(k)∆g(k)

= f(k)g(k)

����
n+1

0

−
�n

k=0(∆f(k))E(g(k))

= k2k
����
n+1

0

−
�n

k=0 1 · 2k+1

= k2k + 2k+1

����
n+1

0
= (n+ 1)2n+1 − 2n+2 − (0 · 20 − 2)
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