Strassen's Matrix Multiplication Andreas Klappenecker

[partially based on slides by Prof. Welch]

Matrix Multiplication

Consider two n x n matrices A and B

Recall that the matrix product C = AB of two n x n matrices is defined as the n x n matrix that has the coefficient

 $c_{kl} = \sum_{m} a_{km} b_{ml}$

in row k and column I, where the sum ranges over the integers from 1 to n; the scalar product of the kth row of a with the lth column of B. The straightforward algorithm uses $O(n^3)$ scalar operations. Can we do better?

Idea: Use Divide and Conquer

The divide and conquer paradigm is important general technique for designing algorithms. In general, it follows the steps:

- divide the problem into subproblems
- recursively solve the subproblems -
- combine solutions to subproblems to get solution to original problem

Divide-and-Conquer

Let write the product A B = C as follows:

Divide matrices A and B into four submatrices each

• We have 8 smaller matrix multiplications and 4 additions. Is it faster?

$A_0 \times B_1 + A_1 \times B_3$

$A_2 \times B_1 + A_3 \times B_3$

Divide-and-Conquer

Let us investigate this recursive version of the matrix multiplication.

Since we divide A, B and C into 4 submatrices each, we can compute the resulting matrix C by

8 matrix multiplications on the submatrices of A and B,

• plus $\Theta(n^2)$ scalar operations

Divide-and-Conquer

 Running time of recursive version of straightfoward algorithm is $T(n) = 8T(n/2) + \Theta(n^2)$ and $T(2) = \Theta(1)$ where T(n) is running time on an $n \times n$ matrix Master theorem gives us:

 $T(n) = \Theta(n^3)$

 Can we do fewer recursive calls (fewer multiplications of the n/2 x n/2 submatrices)?

Strassen's Matrix Multiplication

 $P_1 = (A_{11} + A_{22})(B_{11} + B_{22})$ $P_2 = (A_{21} + A_{22}) * B_{11}$ $P_3 = A_{11} * (B_{12} - B_{22})$ $P_4 = A_{22} * (B_{21} - B_{11})$ $P_5 = (A_{11} + A_{12}) * B_{22}$ $P_6 = (A_{21} - A_{11}) * (B_{11} + B_{12})$ $P_7 = (A_{12} - A_{22}) * (B_{21} + B_{22})$

 $C_{11} = P_1 + P_4 - P_5 + P_7$ $C_{12} = P_3 + P_5$ $C_{21} = P_2 + P_4$ $C_{22} = P_1 + P_3 - P_2 + P_6$

C_{12} C₂₂

Strassen's Matrix Multiplication

 Strassen found a way to get all the required information with only 7 matrix multiplications, instead of 8.

• Recurrence for new algorithm is

• $T(n) = 7T(n/2) + \Theta(n^2)$

Solving the Recurrence Relation

Applying the Master Theorem to T(n) = a T(n/b) + f(n)with a=7, b=2, and $f(n)=\Theta(n^2)$. Since $f(n) = O(n^{\log_b(a)-\varepsilon}) = O(n^{\log_2(7)-\varepsilon})$, case a) applies and we get $T(n) = \Theta(n^{\log_{b}(a)}) = \Theta(n^{\log_{2}(7)}) = O(n^{2.81}).$

Discussion of Strassen's Algorithm

- Not always practical
 - constant factor is larger than for naïve method
 - specially designed methods are better on sparse matrices
 - issues of numerical (in)stability
 - recursion uses lots of space
- Not the fastest known method
 - Fastest known is O(n^{2.3727}) [Winograd-Coppersmith algorithm improved by V. Williams]
 - Best known lower bound is $\Omega(n^2)$