Strassen's Matrix Multiplication Andreas Klappenecker

[partially based on slides by Prof. Welch]

Matrix Multiplication

Consider two $n \times n$ matrices A and B
Recall that the matrix product $C=A B$ of two $n \times n$ matrices is defined as the $n \times n$ matrix that has the coefficient

$$
c_{\mathrm{kl}}=\sum_{\mathrm{m}} a_{\mathrm{km}} b_{\mathrm{ml}}
$$

in row k and column l, where the sum ranges over the integers from 1 to n; the scalar product of the $k^{\text {th }}$ row of a with the $I^{\text {th }}$ column of B.

The straightforward algorithm uses $O\left(n^{3}\right)$ scalar operations.
Can we do better?

Idea: Use Divide and Conquer

The divide and conquer paradigm is important general technique for designing algorithms. In general, it follows the steps:

- divide the problem into subproblems
- recursively solve the subproblems
- combine solutions to subproblems to get solution to original problem

Divide-and-Conquer

Let write the product $A B=C$ as follows:

A_{0}	A_{1}			
A_{2}	A_{3}	\times	B_{0}	B_{1}
:---	:---			
B_{2}	B_{3}		$\mathbf{A}_{0} \times \mathbf{B}_{0}+\mathbf{A}_{1} \times \mathbf{B}_{2}$	$\mathbf{A}_{0} \times \mathbf{B}_{1}+\mathbf{A}_{1} \times \mathbf{B}_{3}$
:---:	:---:	:---:		
$\mathbf{A}_{2} \times \mathbf{B}_{0}+\mathbf{A}_{3} \times \mathbf{B}_{2}$	$\mathbf{A}_{2} \times \mathbf{B}_{1}+\mathbf{A}_{3} \times \mathbf{B}_{3}$			

- Divide matrices A and B into four submatrices each
- We have 8 smaller matrix multiplications and 4 additions. Is it faster?

Divide-and-Conquer

Let us investigate this recursive version of the matrix multiplication.

Since we divide A, B and C into 4 submatrices each, we can compute the resulting matrix C by

- 8 matrix multiplications on the submatrices of A and B,
- plus $\Theta\left(n^{2}\right)$ scalar operations

Divide-and-Conquer

- Running time of recursive version of straightfoward algorithm is

$$
\begin{aligned}
& T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \text { and } T(2)=\Theta(1) \\
& \quad \text { where } T(n) \text { is running time on an } n \times n \text { matrix }
\end{aligned}
$$

- Master theorem gives us:

$$
T(n)=\Theta\left(n^{3}\right)
$$

- Can we do fewer recursive calls (fewer multiplications of the $n / 2 \times$ $\mathrm{n} / 2$ submatrices)?

Strassen's Matrix Multiplication

Strassen's Matrix Multiplication

- Strassen found a way to get all the required information with only 7 matrix multiplications, instead of 8 .
- Recurrence for new algorithm is
- $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$

Solving the Recurrence Relation

Applying the Master Theorem to

$$
T(n)=a T(n / b)+f(n)
$$

with $a=7, b=2$, and $f(n)=\Theta\left(n^{2}\right)$.
Since $f(n)=O\left(n^{\left.\log _{b}(a)-\varepsilon\right)}=O\left(n^{\log 2(7)-\varepsilon}\right)\right.$,
case a) applies and we get
$T(n)=\Theta\left(n^{\operatorname{logb}_{b}(a)}\right)=\Theta\left(n^{\log _{2}(7)}\right)=O\left(n^{2.81}\right)$.

Discussion of Strassen's Algorithm

- Not always practical
- constant factor is larger than for naïve method
- specially designed methods are better on sparse matrices
- issues of numerical (in)stability
- recursion uses lots of space
- Not the fastest known method
- Fastest known is $O\left(n^{2.3727}\right)$ [Winograd-Coppersmith algorithm improved by V . Williams]
- Best known lower bound is $\Omega\left(n^{2}\right)$

