Sorting Lower Bound Andreas Klappenecker based on slides by Prof. Welch

Insertion Sort Review

How it works:

- incrementally build up longer and longer prefix of the array of keys that is in sorted order
- take the current key, find correct place in sorted prefix, and shift to make room to insert it
- Finding the correct place relies on comparing current key to keys in sorted prefix

Worst-case running time is Θ(n²)

Insertion Sort Demo

<u>http://sorting-algorithms.com</u>

Heapsort Review

How it works:

put the keys in a heap data structure

repeatedly remove the min from the heap

Manipulating the heap involves comparing keys to each other

Worst-case running time is Θ(n log n)

Heapsort Demo

http://www.sorting-algorithms.com

Mergesort Review

How it works:

split the array of keys in half

recursively sort the two halves

merge the two sorted halves

Merging the two sorted halves involves comparing keys to each other

Worst-case running time is Θ(n log n)

Mergesort Demo

http://www.sorting-algorithms.com

Quicksort Review

How it works:

choose one key to be the pivot

- partition the array of keys into those keys < the pivot and those ≥ the pivot
- recursively sort the two partitions
- Partitioning the array involves comparing keys to the pivot
- Worst-case running time is $\Theta(n^2)$

Quicksort Demo

http://www.sorting-algorithms.com

Comparison-Based Sorting

All these algorithms are comparison-based

- the behavior depends on relative values of keys, not exact values
- behavior on [1,3,2,4] is same as on [9,25,23,99]

Fastest of these algorithms was O(n log n).

We will show that's the best you can get with comparison-based sorting.

Decision Tree

Consider any comparison based sorting algorithm

Represent its behavior on all inputs of a fixed size with a decision tree

Each tree node corresponds to the execution of a comparison

Each tree node has two children, depending on whether the parent comparison was true or false

Each leaf represents correct sorted order for that path

first comparison: check if a_i≤a_i

first comparison: check if a_i ≤ a_j YES

first comparison: check if $a_i \le a_j$ YES

second comparison if $a_i \le a_j$: check if $a_k \le a_l$

first comparison: check if $a_i \le a_j$ YES

second comparison if $a_i \le a_j$: check if $a_k \le a_l$ YES

first comparison: check if $a_i \le a_j$ YES

second comparison if $a_i \le a_j$: check if $a_k \le a_l$ YES

third comparison if $a_i \le a_j$ and $a_k \le a_l$: check if $a_x \le a_v$

first comparison: check if $a_i \leq a_i$ YES NO second comparison if $a_i \leq a_i$: check if $a_k \leq a_l$ YES third comparison if $a_i \leq a_i$ and $a_k \leq a_i$: check if $a_x \leq a_y$

first comparison: check if $a_i \leq a_i$ YES NO second comparison second comparison if $a_i \leq a_i$: check if if $a_i > a_j$: check if $a_k \leq a_l$ $a_m \leq a_p$ YES third comparison if $a_i \leq a_i$ and $a_k \leq a_i$: check if $a_x \leq a_y$

Insertion Sort

for j := 2 to n to
 key := a[j]
 i := j-1
 while i > 0 and a[i] > key do
 a[i+1] := a[i]
 i := i -1
 endwhile
 a[i+1] := key
endfor

NO

 $a_1 \leq a_3$?

NO

 $a_1 \leq a_2$?

 $a_1 \leq a_2$?

NO $a_1 \leq a_3$? NO $a_2 \leq a_3$? NO

How Many Leaves?

Must be at least one leaf for each permutation of the input

otherwise there would be a situation that was not correctly sorted

Number of permutations of n keys is n!.

Idea: since there must be a lot of leaves, but each decision tree node only has two children, tree cannot be too shallow

depth of tree is a lower bound on running time

Height of a binary tree with n! leaves is

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

h = 1, 2^{1} leaves h = 2, 2^{2} leaves

Height of a binary tree with n! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

 2^{1} leaves $h = 2, 2^{2}$ leaves $h = 3, 2^{3}$ leaves

Proof of Lemma Let h be the height of decision tree, so it has at most 2^h leaves. The actual number of leaves is n!, hence $2^{h} \ge n!$ $h \ge log(n!)$ $= \log(n(n-1)(n-1)...(2)(1))$ $\geq (n/2)\log(n/2)$ by algebra = $\Omega(n \log n)$

Finishing Up

Any binary tree with n! leaves has height Ω(n log n).

Decision tree for any c-b sorting alg on n keys has height Ω(n log n).

Any c-b sorting alg has at least one execution with Ω(n log n) comparisons

Any c-b sorting alg has Ω(n log n) worst-case running time.