Asymptotic Notations CSCE 411
Design and Analysis of Algorithms

Andreas Klappenecker

Goal of this Lecture

- Recall the basic asymptotic notations such as Big Oh, Big Omega, Big Theta, and little oh.
- Recall some basic properties of these notations
- Give some motivation why these notions are defined in the way they are.
- Give some examples of their usage.

Summary

Let $\mathrm{g}: \mathrm{N}->C$ be a real or complex valued function on the natural numbers.

$$
\begin{aligned}
& O(g)=\left\{f: N->C \mid \exists u>0 \exists n_{0} \in N\right. \\
& \left.|f(n)|<=u|g(n)| \text { for all } n>=n_{0}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Omega(g)=\left\{f: N->C \mid \exists d>0 \quad \exists n_{0} \in N\right. \\
& d \operatorname{dlg}(n)\left|<=|f(n)| \text { for all } n>=n_{0}\right\}
\end{aligned}
$$

$\Theta(\mathrm{g})=\left\{\mathrm{f}: \mathrm{N} \rightarrow \mathrm{C} \mid \exists \mathrm{u}, \mathrm{d}>0 \exists \mathrm{n}_{0} \in \mathrm{~N}\right.$

$$
\left.\operatorname{dg}(n)|<=|f(n)|<=u \lg (n)| \text { for all } n>=n_{0}\right\}
$$

$o(g)=\left\{f: N->C\left|\lim _{n \rightarrow \infty}\right| f(n)|/ \lg (n)|=0\right\}$

Time Complexity

- When estimating the time-complexity of algorithms, we simply want count the number of operations. We want to be
- independent of the compiler used (esp. about details concerning the number of instructions generated per high-level instruction),
- independent of optimization settings, and architectural details.

This means that performance should only be compared up to multiplication by a constant.

- We want to ignore details such as initial filling the pipeline. Therefore, we need to ignore the irregular behavior for small n

Big Oh

Big Oh Notation

Let $f, g: N \rightarrow R$ be function from the natural numbers to the set of real numbers.

We write $f \in O(g)$ if and only if there exists some real number n_{0} and a positive real constant u such that

$$
|f(n)|<=u \lg (n) \mid
$$

for all $n>=n_{0}$

Big Oh

Let $\mathrm{g}: \mathrm{N}$-> C be a function.

Then $O(\mathrm{~g})$ is the set of functions
$O(g)=\left\{f: N \rightarrow C \mid\right.$ there exists a constant u and a natural number n_{0} such that

$$
\left.|f(n)|<=u|g(n)| \text { for all } n>=n_{0}\right\}
$$

Notation

We have

$$
O\left(n^{2}\right) \subseteq O\left(n^{3}\right)
$$

but it is usually written as

$$
O\left(n^{2}\right)=O\left(n^{3}\right)
$$

This does not mean that the sets are equal!!!! The equality sign should be read as 'is a subset of'.

Notation

We write $n^{2}=O\left(n^{3}\right)$,
[read as: n^{2} is contained in $O\left(n^{3}\right)$]

But we never write

$$
O\left(n^{3}\right)=n^{2}
$$

Example $O\left(n^{2}\right)$

Big Oh Notation

The Big Oh notation was introduced by the number theorist Paul Bachman in 1894. It perfectly matches our requirements on measuring time complexity.

Example:

$$
4 n^{3}+3 n^{2}+6 \text { in } O\left(n^{3}\right)
$$

The biggest advantage of the notation is that complicated expressions can be dramatically simplified.

Quiz

Does $O(1)$ contain only the constant functions?

Tool 1: Limits

Limit

Let $\left(x_{n}\right)$ be a sequence of real numbers.
We say that μ is the limit of this sequence of numbers and write

$$
\mu=\lim _{n \rightarrow \infty} x_{n}
$$

if and only if for each $\varepsilon>0$ there exists a natural number n_{0} such that $\left|x_{n}-\mu\right|<\varepsilon$ for all $\left.n\right\rangle=n_{0}$

$\mu ? \mu!$

Limit - Again!

Let $\left(x_{n}\right)$ be a sequence of real numbers.

We say that μ is the limit of this sequence of numbers and write $\mu=\lim _{n \rightarrow \infty} x_{n}$
if and only if for each $\varepsilon>0$ there exists a natural number n_{0} such that $\left|x_{n}-\mu\right|<\varepsilon$ for all $\left.n\right\rangle=n_{0}$

How do we prove that $\mathrm{g}=\mathrm{O}(\mathrm{f})$?

Lemma 1. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_{0}$ for some positive integer n_{0}. If the limit $\lim _{n \rightarrow \infty}|f(n) / g(n)|$ exists and is finite then $f(n)=O(g(n))$.
Proof. If $\lim _{n \rightarrow \infty}|f(n) / g(n)|=C$, then for each $\epsilon>0$ there exists a positive integer $n_{0}(\epsilon)$ such that $C-\epsilon \leq|f(n) / g(n)| \leq C+\epsilon$ for all $n \geq n_{0}$; this shows that $|f(n)| \leq(C+\epsilon)|g(n)|$ for all integers $n \geq n_{0}(\epsilon)$. It follows that $f(n)=O(g(n))$.

Big versus Little Oh

$O(g)=\left\{f: N->C \mid \exists u>0 \exists n_{0} \in N\right.$ $|f(n)|<=u \lg (n) \mid$ for all $\left.n>=n_{0}\right\}$
$o(g)=\left\{f: N->C\left|\lim _{n \rightarrow \infty}\right| f(n)|/ \lg (n)|=0\right\}$

Quiz

It follows that $o(f)$ is a subset of $O(f)$.

Why?

Quiz

What does $f=o(1)$ mean?

Hint:
$o(g)=\left\{f: N->C\left|\lim _{n \rightarrow \infty}\right| f(n)|/ \lg (n)|=0\right\}$

Quiz

Some computer scientists consider little oh notations too sloppy.
For example, $1 / n+1 / n^{2}$ is o(1)
but they might prefer $1 / n+1 / n^{2}=O(1 / n)$.

Why is that?

Tool 2: Limit Superior

Limits? There are no Limits!

The limit of a sequence might not exist.
For example, if $f(n)=1+(-1)^{n}$ then $\lim _{n \rightarrow \infty} f(n)$
does not exist.

Least Upper Bound (Supremum)

The supremum b of a set of real numbers S is the defined as the smallest real number b such that $b>=s$ for all s in S.

We write $b=\sup S$.

- $\sup \{1,2,3\}=3$,
- $\sup \left\{x: x^{2}<2\right\}=\operatorname{sqrt}(2)$,
- $\sup \left\{(-1)^{\wedge} n-1 / n: n>=0\right\}=1$.

The Limit Superior

The limit superior of a sequence $\left(x_{n}\right)$ of real numbers is defined as $\lim _{\sup _{n \rightarrow \infty}} x_{n}=\lim _{n \rightarrow \infty}\left(\sup \left\{x_{m}: m>=n\right\}\right)$
[Note that the limit superior always exists in the extended real line (which includes $\pm \infty$), as $\sup \left\{x_{m}: m>=n\right\}$) is a monotonically decreasing function of n and is bounded below by any element of the sequence.]

The Limit Superior

The limit superior of a sequence of real numbers is equal to the greatest accumulation point of the sequence.

Necessary and Sufficient Condition

Lemma 2. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_{0}$ for some positive integer n_{0}. We have $\lim \sup _{n \rightarrow \infty}|f(n) / g(n)|<\infty$ if and only if $f(n)=O(g(n))$.

Proof. If $\lim \sup _{n \rightarrow \infty}|f(n) / g(n)|=C$, then for each $\epsilon>0$ we have

$$
|f(n)| /|g(n)|>C+\epsilon
$$

for at most finitely many positive integers; so $|f(n)| \leq(C+\epsilon)|g(n)|$ holds for all integers $n \geq n_{0}(\epsilon)$ for some positive integer $n_{0}(\epsilon)$, and this proves that $f(n)=O(g(n))$.

Conversely, if $f(n)=O(g(n))$, then there exists a positive integer n_{0} and a constant C such that $g(n) \neq 0$ and $|f(n)| /|g(n)| \leq C$ for all $n \geq n_{0}$. This implies that $\lim _{\sup _{n \rightarrow \infty}}|f(n) / g(n)| \leq C$.

Big Omega

Big Omega Notation

Let f, g : $N->R$ be functions from the set of natural numbers to the set of real numbers.

We write $g \in \Omega(f)$ if and only if there exists some real number n_{0} and a positive real constant C such that

$$
|g(n)|>=C|f(n)|
$$

for all n in N satisfying $n>=n_{0}$.

Big Omega

Theorem: $f \in \Omega(g)$ iff $\lim \inf _{n \rightarrow \infty}|f(n) / g(n)|>0$.
Proof: If $\lim \inf |f(n) / g(n)|=c>0$, then we have for each $\varepsilon>0$ at most finitely many positive integers satisfying $|f(n) / g(n)|<C-\varepsilon$. Thus, there exists an n_{0} such that

$$
|f(n)| \geq(C-\varepsilon)|g(n)|
$$

holds for all $n \geq n_{0}$, proving that $f \in \Omega(g)$.
The converse follows from the definitions.

Big Theta

Big Theta Notation

Let S be a subset of the real numbers (for instance, we can choose S to be the set of natural numbers).

If f and g are functions from S to the real numbers, then we write $g \in \Theta(f)$ if and only if
there exists some real number n_{0} and positive real constants C and C^{\prime} such that

$$
C|f(n)|<=|g(n)|<=C^{\prime}|f(n)|
$$

for all n in S satisfying $n>=n_{0}$.
Thus,

Harmonic Number

The Harmonic number H_{n} is defined as

$$
H_{n}=1+1 / 2+1 / 3+\ldots+1 / n .
$$

We have

$$
H_{n}=\ln n+\gamma+O(1 / n)
$$

where γ is the Euler-Mascheroni constant

$\log n!$

Recall that $1!=1$ and $n!=(n-1)!n$.
Theorem: $\log n!=\Theta(n \log n)$
Proof:
$\log n!=\log 1+\log 2+\ldots+\log n$

$$
<=\log n+\log n+\ldots+\log n=n \log n
$$

Hence, $\log n!=O(n \log n)$.

$\log n!$

On the other hand,

$$
\begin{aligned}
\log n! & =\log 1+\log 2+\ldots+\log n \\
> & =\log (\lfloor(n+1) / 2\rfloor)+\ldots+\log n \\
> & =(\lfloor(n+1) / 2\rfloor) \log (\lfloor(n+1) / 2\rfloor) \\
> & =n / 2 \log (n / 2) \\
& =\Omega(n \log n)
\end{aligned}
$$

For the last step, note that $\lim _{\inf }^{n \rightarrow \infty}$ (n/2 $\left.\log (n / 2)\right) /(n \log n)=1 / 2$.

