
Asymptotic Notations
CSCE 411 

Design and Analysis of Algorithms

Andreas Klappenecker



Goal of this Lecture

• Recall the basic asymptotic notations such as Big Oh, Big Omega, 
Big Theta, and little oh. 

• Recall some basic properties of these notations

• Give some motivation why these notions are defined in the way 
they are. 

• Give some examples of their usage. 



Summary 
Let g: N->C be a real or complex valued function on the natural numbers. 

O(g) = { f: N-> C | ∃u>0 ∃n0 ∈N

                |f(n)| <= u|g(n)| for all n>= n0 }

Ω(g) = { f: N-> C | ∃d>0 ∃n0 ∈N

                d|g(n)| <= |f(n)| for all n>= n0 }

Θ(g) = { f: N-> C | ∃u,d>0 ∃n0 ∈N

   d|g(n)| <= |f(n)| <= u|g(n)| for all n>= n0 }

o(g) = { f: N-> C | limn->∞  |f(n)|/|g(n)| = 0 }



Time Complexity

• When estimating the time-complexity of algorithms, we simply want count 
the number of operations. We want to be

• independent of the compiler used (esp. about details concerning the 
number of instructions generated per high-level instruction), 

• independent of optimization settings, and architectural details. 

! This means that performance should only be compared up to multiplication 
by a constant. 

• We want to ignore details such as initial filling the pipeline. Therefore, we 
need to ignore the irregular behavior for small n.



Big Oh



Big Oh Notation

Let f,g: N -> R be function from the natural numbers to the 
set of real numbers. 

We write f ∈ O(g) if and only if there exists some real 
number n0 and a positive real constant u such that 

! ! ! |f(n)| <= u|g(n)| 

for all n>= n0



Big Oh

Let g: N-> C be a function. 

Then O(g) is the set of functions

O(g) = { f: N-> C | there exists a constant u and a natural number n0 
such that 

! |f(n)| <= u|g(n)| for all  n>= n0 }



Notation

We have 

! O(n2) ⊆ O(n3) 

but it is usually written as 

!  O(n2) = O(n3) 

This does not mean that the sets are equal!!!! The equality sign 
should be read as ‘is a subset of’. 



Notation

We write n2 = O(n3),

[ read as: n2  is contained in O(n3) ] 

But we never write 

! O(n3) = n2



Example O(n2)



Big Oh Notation

The Big Oh notation was introduced by the number theorist Paul 
Bachman in 1894. It perfectly matches our requirements on 
measuring time complexity. 

Example: 

! ! 4n3+3n2+6 in O(n3)

The biggest advantage of the notation is that complicated expressions 
can be dramatically simplified.



Quiz

Does O(1) contain only the constant functions?



Tool 1: Limits



Limit

Let (xn) be a sequence of real numbers.

We say that µ is the limit of this sequence of numbers and write  

! µ = limn->∞ xn 

if and only if for each ε > 0 there exists a natural number n0 such 
that |xn -µ |< ε for all n >= n0 



µ? µ!



Limit – Again!

Let (xn) be a sequence of real numbers.

We say that µ is the limit of this sequence of numbers and write  

! µ = limn->∞ xn 

if and only if for each ε > 0 there exists a natural number n0 such 
that |xn -µ |< ε for all n >= n0 



How do we prove that g = O(f)?



Big versus Little Oh

O(g) = { f: N-> C | ∃u>0 ∃n0 ∈N

                |f(n)| <= u|g(n)| for all n>= n0 }

o(g) = { f: N-> C | limn->∞  |f(n)|/|g(n)| = 0 }



Quiz

It follows that o(f) is a subset of O(f).

Why? 



Quiz

What does f = o(1) mean?

Hint:

o(g) = { f: N-> C | limn->∞  |f(n)|/|g(n)| = 0 }



Quiz

Some computer scientists consider little oh notations too sloppy. 

For example, 1/n+1/n2 is o(1)

but they might prefer 1/n+1/n2  = O(1/n).

Why is that?



Tool 2: Limit Superior



Limits? There are no Limits!

The limit of a sequence might not exist. 

For example, if f(n) = 1+(-1)n then

! limn->∞ f(n) 

does not exist.



Least Upper Bound (Supremum)

The supremum b of a set of real numbers S is the defined as the 
smallest real number b such that b>=s for all s in S.  

 We write b = sup S. 

• sup {1,2,3} = 3,

• sup {x : x2 <2} = sqrt(2),

• sup {(-1)^n – 1/n : n>=0 } = 1.   



The Limit Superior

The limit superior of a sequence (xn) of real numbers is defined as 

lim supn ->∞ xn =  limn ->∞ ( sup { xm : m>=n})

[Note that the limit superior always exists in the extended 
real line (which includes ±∞), as sup { xm : m>=n}) is a 
monotonically decreasing function of n and is bounded below 
by any element of the sequence.]  



The Limit Superior

The limit superior of a sequence of real numbers is equal to the greatest 
accumulation point of the sequence. 



Necessary and Sufficient Condition



Big Omega



Big Omega Notation

Let f, g: N-> R be functions from the set of natural numbers 
to the set of real numbers.

We write g ∈ Ω(f) if and only if there exists some real 
number n0 and a positive real constant C such that 

! ! ! |g(n)| >= C|f(n)| 

for all n in N satisfying n>= n0.



Big Omega

Theorem: f∈Ω(g) iff lim infn->∞|f(n)/g(n)|>0.

Proof: If lim inf |f(n)/g(n)|= C>0, then we have for each ε>0 at most 
finitely many positive integers satisfying |f(n)/g(n)|< C-ε. Thus, 
there exists an n0 such that 

! |f(n)| ≥ (C-ε)|g(n)|

holds for all n ≥ n0, proving that f∈Ω(g). 

The converse follows from the definitions. 



Big Theta



Big Theta Notation

Let S be a subset of the real numbers (for instance, we can choose S to be the 
set of natural numbers).

If f and g are functions from S to the real numbers, then we write g ∈ Θ(f) if 
and only if 

there exists some real number n0 and positive real constants C and C’ such that 

! ! C|f(n)|<= |g(n)| <= C’|f(n)| 

for all n in S satisfying n>= n0 .

Thus, Θ(f) = O(f) ∩ Ω(f)



Harmonic Number
The Harmonic number Hn is defined as

! Hn = 1+1/2+1/3+…+1/n.

We have 

! Hn = ln n + γ + O(1/n)

where γ is the Euler-Mascheroni constant

                                                     =0.577…  



log n!

Recall that 1! = 1 and n! = (n-1)! n.

Theorem: log n! = Θ(n log n)

Proof: 

log n! = log 1 + log 2 + … + log n

! <= log n + log n + … + log n = n log n 

Hence, log n! = O(n log n). 



log n! 
On the other hand,

log n! = log 1 + log 2 + … + log n

! >= log (⎣(n+1)/2⎦) + … + log n

! >= (⎣(n+1)/2⎦) log (⎣(n+1)/2⎦)

! >= n/2 log(n/2) 

! = Ω(n log n) 

For the last step, note that 

lim infn->∞ (n/2 log(n/2))/(n log n) = ½.  


