Asymptotic Notations CSCE 411 Design and Analysis of Algorithms

Andreas Klappenecker

Goal of this Lecture

- Recall the basic asymptotic notations such as Big Oh, Big Omega, Big Theta, and little oh.
- Recall some basic properties of these notations
- Give some motivation why these notions are defined in the way they are.
- Give some examples of their usage.

Summary

Let g: $N \rightarrow C$ be a real or complex valued function on the natural numbers. $O(g) = \{ f: N \rightarrow C \mid \exists u > 0 \exists n_0 \in \mathbb{N} \}$ $|f(n)| \le u[g(n)|$ for all $n \ge n_0$ $\Omega(g) = \{ f: N \rightarrow C \mid \exists d \rightarrow 0 \exists n_0 \in \mathbb{N} \}$ $d|q(n)| \le |f(n)|$ for all $n \ge n_0$ $\Theta(g) = \{ f: N \rightarrow C \mid \exists u, d > 0 \exists n_0 \in N \}$ $d|g(n)| \le |f(n)| \le u|g(n)|$ for all $n \ge n_0$ $o(g) = \{ f: N \rightarrow C \mid \lim_{n \rightarrow \infty} |f(n)|/|g(n)| = 0 \}$

Time Complexity

 When estimating the time-complexity of algorithms, we simply want count the number of operations. We want to be

- independent of the compiler used (esp. about details concerning the number of instructions generated per high-level instruction),
- independent of optimization settings, and architectural details.

This means that performance should only be compared up to multiplication by a constant.

• We want to ignore details such as initial filling the pipeline. Therefore, we need to ignore the irregular behavior for small n

Big Oh Notation

Let f,g: $N \rightarrow R$ be function from the natural numbers to the set of real numbers.

We write $f \in O(g)$ if and only if there exists some real number n_0 and a positive real constant u such that |f(n)| <= u|q(n)|for all $n \ge n_0$

Big Oh

Let $q: N \rightarrow C$ be a function.

Then O(g) is the set of functions $O(g) = \{ f: N \rightarrow C \mid \text{there exists a constant u and a natural number } n_0$ such that

 $|f(n)| \le u|g(n)|$ for all $n \ge n_0$

Notation

We have $O(n^2) \subseteq O(n^3)$ but it is usually written as $O(n^2) = O(n^3)$

This does not mean that the sets are equal!!!! The equality sign should be read as `is a subset of'.

Notation

We write n² = O(n³), [read as: n² is contained in O(n³)]

But we never write $O(n^3) = n^2$

Example $O(n^2)$

Big Oh Notation

The Big Oh notation was introduced by the number theorist Paul Bachman in 1894. It perfectly matches our requirements on measuring time complexity.

Example:

 $4n^3+3n^2+6$ in O(n³)

The biggest advantage of the notation is that complicated expressions can be dramatically simplified.

Does O(1) contain only the constant functions?

Tool 1: Limits

Limit

Let (x_n) be a sequence of real numbers. We say that μ is the limit of this sequence of numbers and write $\mu = \lim_{n \to \infty} x_n$

if and only if for each ε > 0 there exists a natural number n_0 such that $|x_n - \mu| < \varepsilon$ for all $n \ge n_0$

µ? µ!

Limit – Again!

Let (x_n) be a sequence of real numbers.

We say that μ is the limit of this sequence of numbers and write $\mu = \lim_{n \to \infty} x_n$

if and only if for each ε > 0 there exists a natural number n_0 such that $|x_n - \mu| < \varepsilon$ for all $n \ge n_0$

How do we prove that g = O(f)?

Lemma 1. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_0$ for some positive integer n_0 . If the limit $\lim_{n\to\infty} |f(n)/g(n)|$ exists and is finite then f(n) = O(g(n)).

Proof. If $\lim_{n\to\infty} |f(n)/g(n)| = C$, then for each $\epsilon > 0$ there exists a positive integer $n_0(\epsilon)$ such that $C - \epsilon \leq |f(n)/g(n)| \leq C + \epsilon$ for all $n \geq n_0$; this shows that $|f(n)| \leq (C+\epsilon)|g(n)|$ for all integers $n \geq n_0(\epsilon)$. It follows that f(n) = O(g(n)).

Big versus Little Oh

$O(g) = \{ f: \mathbb{N} \rightarrow C \mid \exists u \ge 0 \exists n_0 \in \mathbb{N} \\ |f(n)| \le u|g(n)| \text{ for all } n \ge n_0 \}$

 $o(g) = \{ f: N \rightarrow C \mid \lim_{n \rightarrow \infty} |f(n)|/|g(n)| = 0 \}$

It follows that o(f) is a subset of O(f).

What does f = o(1) mean?

Hint:

 $o(g) = \{ f: N \rightarrow C | \lim_{n \rightarrow \infty} |f(n)|/|g(n)| = 0 \}$

Quiz

Some computer scientists consider little oh notations too sloppy. For example, $1/n+1/n^2$ is o(1)but they might prefer $1/n+1/n^2 = O(1/n)$.

Why is that?

Tool 2: Limit Superior

Limits? There are no Limits!

The limit of a sequence might not exist. For example, if $f(n) = 1+(-1)^n$ then $\lim_{n\to\infty} f(n)$ does not exist.

Least Upper Bound (Supremum)

The supremum b of a set of real numbers S is the defined as the smallest real number b such that $b \ge s$ for all s in S.

We write $b = \sup S$.

- sup $\{1,2,3\} = 3$,
- sup {x : x² < 2} = sqrt(2),</p>
- $sup \{(-1)^n 1/n : n \ge 0 \} = 1.$

The Limit Superior

The limit superior of a sequence (x_n) of real numbers is defined as $\lim \sup_{n \to \infty} x_n = \lim_{n \to \infty} (\sup \{x_m : m > = n\})$

[Note that the limit superior always exists in the extended real line (which includes $\pm\infty$), as sup { $x_m : m \ge n$ }) is a monotonically decreasing function of n and is bounded below by any element of the sequence.]

The Limit Superior

The limit superior of a sequence of real numbers is equal to the greatest accumulation point of the sequence.

Necessary and Sufficient Condition

Lemma 2. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_0$ for some positive integer n_0 . We have $\limsup_{n\to\infty} |f(n)/g(n)| < \infty$ if and only if f(n) = O(g(n)).

Proof. If $\limsup_{n\to\infty} |f(n)/g(n)| = C$, then for each $\epsilon > 0$ we have

 $|f(n)|/|g(n)| > C + \epsilon$

for at most finitely many positive integers; so $|f(n)| \leq (C + \epsilon)|g(n)|$ holds for all integers $n \ge n_0(\epsilon)$ for some positive integer $n_0(\epsilon)$, and this proves that f(n) = O(g(n)).

Conversely, if f(n) = O(g(n)), then there exists a positive integer n_0 and a constant C such that $g(n) \neq 0$ and $|f(n)|/|g(n)| \leq C$ for all $n \geq n_0$. This implies that $\limsup_{n\to\infty} |f(n)/g(n)| \le C$.

Big Omega

Big Omega Notation

Let f, g: N-> R be functions from the set of natural numbers to the set of real numbers.

We write $g \in \Omega(f)$ if and only if there exists some real number no and a positive real constant C such that |q(n)| >= C|f(n)|for all n in N satisfying $n \ge n_0$.

Big Omega

Theorem: $f \in \Omega(g)$ iff $\lim \inf_{n \to \infty} |f(n)/g(n)| > 0$. Proof: If lim inf |f(n)/g(n)| = C>0, then we have for each $\varepsilon>0$ at most finitely many positive integers satisfying $|f(n)/g(n)| < C-\varepsilon$. Thus, there exists an n_0 such that

 $|f(n)| \ge (C-\varepsilon)|q(n)|$

holds for all $n \ge n_0$, proving that $f \in \Omega(g)$. The converse follows from the definitions.

Big Theta

Big Theta Notation

Let S be a subset of the real numbers (for instance, we can choose S to be the set of natural numbers).

If f and g are functions from S to the real numbers, then we write $q \in \Theta(f)$ if and only if

there exists some real number n_0 and positive real constants C and C' such that

 $C|f(n)| \le |g(n)| \le C'|f(n)|$

for all n in S satisfying $n \ge n_0$.

Thus, $\Theta(f) = O(f) \cap \Omega(f)$

Harmonic Number The Harmonic number H_n is defined as $H_n = 1 + 1/2 + 1/3 + ... + 1/n.$ We have $H_n = \ln n + \gamma + O(1/n)$ where γ is the Euler-Mascheroni constant $\gamma = \lim_{n \to \infty} \left| \left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right| = \int_{1}^{\infty} \left(\frac{1}{|x|} - \frac{1}{x} \right) \, dx. = 0.577...$

log n!

Recall that 1! = 1 and n! = (n-1)! n. Theorem: $\log n! = \Theta(n \log n)$ Proof: $\log n! = \log 1 + \log 2 + ... + \log n$ $<= \log n + \log n + \dots + \log n = n \log n$ Hence, $\log n! = O(n \log n)$.

log n!

On the other hand, $\log n! = \log 1 + \log 2 + ... + \log n$ >= log ([(n+1)/2]) + ... + log n >= $(\lfloor (n+1)/2 \rfloor) \log (\lfloor (n+1)/2 \rfloor)$ >= n/2 log(n/2) = $\Omega(n \log n)$ For the last step, note that $\lim_{n\to\infty} (n/2 \log(n/2))/(n \log n) = \frac{1}{2}$.

