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Randomized Selection
Randomized-Select(A,p,r,i) // return the ith smallest elem. of A[p..r]

  if (p == r) then return A[p];

  q := Randomized-Partition(A,p,r); // compute pivot

  k := q-p+1; // number of elements <= pivot

  if (i==k) then return A[q]; // found ith smallest element

  elseif (i < k) then return Randomized-Select(A,p,q-1,i);

  else Randomized-Select(A,q+1,r, i-k);



Partition
Randomized-Partition(A,p,r)

  i := Random(p,r);

  swap(A[i],A[r]);  

  Partition(A,p,r);

Almost the same as Partition, but now the pivot element is not the 
rightmost element, but rather an element from A[p..r] that is chosen 
uniformly at random. 



Running Time

The worst case running time of Randomized-Select is Θ(n2)

The expected running time of Randomized-Select is Θ(n)

No particular input elicits worst case running time. 



Running Time

Let T(n) denote the random variable describing the running time 
of Randomized-Select on input of A[p..r].

Suppose A[p..r] contains n elements. Each element of A[p..r] is 
equally likely to be the pivot, so A[p..q] has size k with 
probability 1/n.

Xk = I{the subarray A[p..q] has k elements} 

E[Xk] = 1/n (assuming elements are distinct)



Running Time

Let’s assume that T(n) is monotonically growing.

Three choices: (a) find ith smallest element right away,           
(b) recurse on A[p..q-1], or (c) recurse on A[p+1,r].

When Xk = 1, then 

A[p..q-1] has k-1 elements and 

A[p+1..r] has n-k elements. 



Recurrence
T (n) ≤

n�

k=1

Xk (T (max(k − 1, n− k)) +O(n))

≤
n�

k=1

XkT (max(k − 1, n− k)) +O(n)

- Assume that we always recurse to larger subarray
- O(n) for partitioning
- Xk = 1 for a single choice, so partition once



Expected Running Time

E[T (n)] ≤
n�

k=1

E[XkT (max(k − 1, n− k))] +O(n)

=
n�

k=1

E[Xk]E[T (max(k − 1, n− k))] +O(n)

=
n�

k=1

1

n
E[T (max(k − 1, n− k))] +O(n)



Expected Running Time

E[T (n)] ≤
n�

k=�n/2�

2

n
E[T (k)] +O(n)

One can prove by induction that

E[T (n)] = O(n).


