Randomized Selection

Andreas Klappenecker

Randomized Selection

Randomized-Select(A,p,r,i) // return the $i^{\text {th }}$ smallest elem. of $A[p . . r]$ if ($p==r$) then return A[p]; $\mathrm{q}:=$ Randomized-Partition(A,p,r); // compute pivot $k:=q-p+1$; // number of elements <= pivot if $(i==k)$ then return $A[q]$; // found $i^{\text {th }}$ smallest element elseif ($i<k$) then return Randomized-Select(A,p,q-1,i); else Randomized-Select(A,q+1,r, i-k);

Partition

Randomized-Partition(A, P, r)
$i:=$ Random(p,r);
swap(A[i],A[r]);
Partition(A, p,r);
Almost the same as Partition, but now the pivot element is not the rightmost element, but rather an element from $A[p . r]$ that is chosen uniformly at random.

Running Time

- The worst case running time of Randomized-Select is $\Theta\left(n^{2}\right)$
- The expected running time of Randomized-Select is $\Theta(n)$
- No particular input elicits worst case running time.

Running Time

- Let $T(n)$ denote the random variable describing the running time of Randomized-Select on input of A[p.r].
- Suppose $A[p . r]$ contains n elements. Each element of $A[p . . r]$ is equally likely to be the pivot, so $A[p . q]$ has size k with probability $1 / n$.
- $X_{k}=I\{$ the subarray $A[p . q]$ has k elements\}
- $E\left[X_{k}\right]=1 / n$ (assuming elements are distinct)

Running Time

- Let's assume that $T(n)$ is monotonically growing.
- Three choices: (a) find $i^{\text {th }}$ smallest element right away, (b) recurse on $A[p . . q-1]$, or (c) recurse on $A[p+1, r]$.
- When $X_{k}=1$, then
- A[p..q-1] has $k-1$ elements and
- $\mathrm{A}[p+1 . . r]$ has $n-k$ elements.

Recurrence

$$
\begin{aligned}
T(n) & \leq \sum_{k=1}^{n} X_{k}(T(\max (k-1, n-k))+O(n)) \\
& \leq \sum_{k=1}^{n} X_{k} T(\max (k-1, n-k))+O(n)
\end{aligned}
$$

- Assume that we always recurse to larger subarray
- O(n) for partitioning
- $X_{k}=1$ for a single choice, so partition once

Expected Running Time

$$
\begin{aligned}
E[T(n)] & \leq \sum_{k=1}^{n} E\left[X_{k} T(\max (k-1, n-k))\right]+O(n) \\
& =\sum_{k=1}^{n} E\left[X_{k}\right] E[T(\max (k-1, n-k))]+O(n) \\
& =\sum_{k=1}^{n} \frac{1}{n} E[T(\max (k-1, n-k))]+O(n)
\end{aligned}
$$

Expected Running Time

$$
E[T(n)] \leq \sum_{k=\lfloor n / 2\rfloor}^{n} \frac{2}{n} E[T(k)]+O(n)
$$

One can prove by induction that

$$
E[T(n)]=O(n) .
$$

