# NP-Completeness of Combinatorial Problems 

Completing Partial Latin Squares, Sudoku, Futoshiki Andreas Klappenecker

## Partial Latin Squares

A partial Latin square of order $n$ is an $n \times n$ array such that

- each entry is either empty or contains a number from $\{1, \ldots, n\}$
- numbers in each row are distinct
- numbers in each column are distinct

A partial Latin square without empty cells is called a Latin square.

## Optical Routing

- An optical network consists of routing nodes that are connected by optical fibers
- The large bandwidth of the optical fibers is subdivided into several channels using light of different wavelengths (wavelength division multiplexing).
- Hardware design for the switches imposes constraints:
(a) \# input ports = \# output ports,
(b) at most one wavelength is used for the channel connecting input port and output port,
(c) wavelength switching matrix w(input $a$, output b) is partial latin square


## Optical Routing



Switch array is a partial Latin square. Can we complete it to a Latin square to better utilize the switch?

## Completing Partial Latin Squares

CPLS: Can a partial Latin square be completed to a Latin square?

## Defect Graph

Given a partial Latin square $P$, its defect graph $G(P)$ is a graph with vertex set $V=R \cup C \cup E$ and the edge set $F$ as follows:

- $R=\left\{r_{i} \mid\right.$ row $i$ contains an empty square $\}$
- $C=\left\{c_{j} \mid\right.$ column $j$ contains an empty square $\}$
- $E=\left\{e_{k} \mid\right.$ element $k$ appears in fewer than $n$ squares $\}$.
(1) $\left(r_{i}, c_{j}\right)$ in $F$ if the $(i, j)$ square of $P$ is empty,
(2) $\left(r_{i}, e_{k}\right)$ in $F$ if row $i$ does not contain element $k$,
(3) $\left(c_{j}, e_{k}\right)$ in $F$ if column $j$ does not contain element $k$.

Triangle $\left\{r_{i}, c_{j}, e_{k}\right\}$ specifies potential completion of cell $(\mathrm{i}, \mathrm{j})$ by $k$

## Example

| 1 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 4 |  | 2 |
| 3 | 2 | 3 |  | 1 |
| 4 | 4 | 1 | 2 | 3 |
|  | 1 2 3 4 |  |  |  |
| 1  |  |  |  |  |

Edges:
$\left\{r_{2}, c_{3}\right\},\left\{r_{3}, c_{3}\right\}$
$\left\{r_{2}, e_{1}\right\},\left\{r_{3}, e_{4}\right\}$
$\left\{c_{3}, e_{1}\right\},\left\{c_{3}, e_{4}\right\}$

## Tripartite Graphs

An undirected graph $G=(V, E)$ is called tripartite if and only if there exist three independent sets $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ that partition V .

The defect graph of a partial Latin square is tripartite (with row, column, and edge defects as independent sets: R, C, and E).

## Partitioning Tripartite Graphs

A triangle partition of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a partition of the edge set E into sets containing three edges that form a triangle.
$G(P)$ has a triangle-partition if and only if the partial Latin square P can be completed.
[Exercise: Prove it!]

Example

| 1 | 1 2 3 <br> 4 4 4 |  | 2 |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 3 |  | 1 |
| 4 | 1 | 2 | 3 |  |

Edges:

$$
\begin{aligned}
& \left\{r_{2}, c_{3}\right\},\left\{r_{3}, c_{3}\right\} \\
& \left\{r_{2}, e_{1}\right\},\left\{r_{3}, e_{4}\right\} \\
& \left\{c_{3}, e_{1}\right\},\left\{c_{3}, e_{4}\right\}
\end{aligned}
$$

Triangle partition:

$$
\begin{aligned}
& T_{1}:\left\{r_{2}, c_{3}\right\},\left\{r_{2}, e_{1}\right\},\left\{c_{3}, e_{1}\right\} \\
& T_{2}:\left\{r_{3}, c_{3}\right\},\left\{r_{3}, e_{4}\right\},\left\{c_{3}, e_{4}\right\}
\end{aligned}
$$

## NPC of Triangle Partitions

TTP: The problem of deciding whether a given tripartite graph has a triangle partition is NP-complete.

Study the argument given in
[Charles Colburn, Discrete Applied Math 8(1):25-30, 1984]
The reduction 3 SAT $\leqslant_{p}$ TTP is used, and is based on work by Hoyler.

# NPC of Completing Partial Latin Squares 

Colburn showed

$$
\text { TTP } \leqslant_{p} C L P S
$$

Since CLPS is in NP, it follows that completing Partial Latin Squares is NPcomplete.

## Exercise: Futoshiki

Recall that a Futoshiki puzzle is a partial Latin square with additional inequality constraints.

FUTOSHIKI: The problem to decide whether a given Futoshiki puzzle can be solved.

Show that FUTOSHIKI is NP-complete.


## Exercise: Sudoku



Show that deciding whether a $n^{2} \times n^{2}$ Sudoku problem can be solved is NP-complete.

## Hints

For the Sudoku example, I suggest the following:

- Choose elements from the range $\left[0 . . n^{2}-1\right]$
- Represent them as 2 digit numbers in base $n$
- Study how some canonical $n^{2} x n^{2}$ Sudoku solutions look like in this representation
- A natural choice is CPLS $\leqslant_{p}$ SUDOKU, but the additional constraints of SUDOKU must be taken into account!


## Conclusion

Many combinatorial problems are NP-hard. We discovered that

- completing the optical routing table is NP-hard
- completing partial Latin squares is NP-hard
- Futoshiki is NP-hard
- Sudoku is NP-hard

Arguments used: 3 SAT $\leqslant_{p} T T P \leqslant_{p}$ CPLS $\leqslant_{p}$ FUTOSHIKI, SUDOKU

