Depth-First Search

Andreas Klappenecker

Depth-First Search

Input: $G=(V, E)$
for each node u in V do mark u as unvisited
od;
for each unvisited node u do
recursiveDFS(u);
od;
Purpose of this loop:
Create DFS forest. Graph can be directed or undirected.

DFS Forest

By keeping track of parents, we want to construct a forest resulting from the DFS traversal.

Depth-First Search

Input: $G=(V, E)$
for each node u in V do
parent[u] = nil;
mark u as unvisited

```
recursiveDFS(u):
    mark u as visited;
    for each unvisited neighbor v of u do
        parent[v] = u; recursiveDFS(v)
    od
```

od;
for each unvisited node u do
parent $[u]=u_{i}$
recursiveDFS(u);
od;

Refining DFS

Let us keep track of some interesting information for each node. We will timestamp the steps and record the

- discovery time, when the recursive call starts
- finish time, when its recursive call ends

Depth-First Search

Input: $G=(V, E)$
for each node u in v do parent[u] = nil; mark u as unvisited
od;
time $=0$;
for each unvisited node u do parent[u] = $u_{\text {i }}$
recursiveDFS(u);
od;

```
recursiveDFS(u):
    mark u as visited;
    disc[u] = ++time;
    for each unvisited neighbor v of u do
        parent[v] = u; recursiveDFS(v)
    od;
    fin[u] = ++time;
```


Running Time of DFS

The first for-loop for initialization takes $\mathrm{O}(\mathrm{V})$ time.
The second for-loop in non-recursive wrapper considers each node, so $\mathrm{O}(\mathrm{V})$ iterations.

One recursive call is made for each node. In a recursive call for the node u, all its neighbors are checked; so the total time in all recursive calls is $O(E)$.

Total time is $\mathrm{O}(\mathrm{V}+\mathrm{E})$.

Nested Intervals

Define [disc[v],fin[v]] to be the interval for node v.
Claim: For any two nodes, either one interval precedes the other or one is enclosed in the other

Indeed, the recursive calls are nested.
Corollary: v is a descendant of u in the DFS forest iff the interval of v is inside the interval of u.

Classifying Edges

Consider edge (u, v) in a directed graph $G=(V, E)$ with respect to its DFS forest

- tree edge: v is a child of u
- back edge: v is an ancestor of u
- forward edge: v is a descendant of u but not a child
-cross edge: none of the above

Example of Classifying Edges

