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3SAT

Given a boolean function in conjunctive normal form such that 
every clause contains exactly three literals, decide whether the 
formula is satisfiable. 

[This a special case of SAT] 



Proving NP-Completeness 

How do you prove that a decision problem L is NP-complete?

(1) Show that L is in NP.

(2.a) Choose an appropriate known NP-complete language L'.

(2.b) Show L' ≤p L



Proof Strategy

(1) 3SAT is in NP, since we can check in polynomial time 
whether a given truth assignment evaluates to true. 

(2.a) Choose SAT as a known NP-complete problem.

(2.b) Describe a reduction from SAT inputs to 3SAT inputs

 computable in polynomial time

 SAT input is satisfiable iff constructed 3SAT input is satisfiable



General Idea of the Reduction

We're given an arbitrary CNF formula C = c1∧ c2 ∧ … ∧ cm over set of 
variables, where each ci is a clause (a disjunction of literals).

We will replace each clause ci with a conjunction of clauses ci', and may 
use some extra variables. Each clause in ci' will have exactly 3 literals. The 
transformed input will be conjunction of all the clauses in all the ci'.



Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 

Case 1:  k = 1.  Use extra variables yi
1 and yi

2.  Replace ci with 4 clauses:

(z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 2:  k = 2.  Use extra variable yi
1.  Replace ci with 2 clauses:

" (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).

"



Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 

Case 3:  k = 3.  No extra variables are needed.  

Keep ci: (z1 ∨ z2 ∨ z3)

"



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:

" (z1 ∨ z2 ∨ yi
1)

   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 

   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 

   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

Text



Polynomial Time Reduction

Each new formula is at most a constant times larger than the 
original formula, and the translation is straightforward. Therefore, 
the reduction is polynomial time. 



Correctness of the Reduction

Show that CNF formula C is satisfiable iff the 3-CNF 
formula C' constructed is satisfiable.

=>: Suppose that C is satisfiable.  We need to construct a 
satisfying truth assignment for C'.

For variables in C’ that are already in C, we use same truth 
assignments as for C.

How should we assign T/F to the new variables?



Truth Assignment for New Variables
Let ci = z1∨ z2 ∨ … ∨ zk 

Case 1:  k = 1.  Use extra variables yi
1 and yi

2.  Replace ci with 4 clauses:

(z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).

Assign yi’s with arbitrary values, as z1 is true



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 2:  k = 2.  Use extra variable yi
1.  Replace ci with 2 clauses:

" (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).

"

Assign yi’s with arbitrary values, as z1 ∨ z2 is true



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 3:  k = 3.  No extra variables are needed.  

Keep ci: (z1 ∨ z2 ∨ z3)

"



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:

" (z1 ∨ z2 ∨ yi
1)

   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 

   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 

   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

If z1 or z2 is true, set all yi’s to 
false, so all later clauses have a 

true literal. 



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:

" (z1 ∨ z2 ∨ yi
1)

   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 

   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 

   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

If zk-1 or zk is the first true literal 
of ci, set all yi’s to true, so all 

earlier clauses have a true literal. 



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:

" (z1 ∨ z2 ∨ yi
1)

   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 

   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4) ⋀" (¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 

   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is in between, 
set all earlier yi's to true and all 
later yi's to false. 



Correctness of Reduction

<=: Suppose the newly constructed 3SAT formula C' is 
satisfiable.  We must show that the original SAT formula C 
is also satisfiable.

Use the same satisfying truth assignment for C as for 
C' (ignoring new variables).

Show each original clause has at least one true literal in it.



Original Clause is True
Let ci = z1∨ z2 ∨ … ∨ zk 

Case 1:  k = 1.  Use extra variables yi
1 and yi

2.  Replace ci with 4 clauses:

ci’ = (z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).

If ci’ is true, then ci = z1 must be true, since 
one  pair of literals in yi1 and yi2 must be true



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 2:  k = 2.  Use extra variable yi
1.  Replace ci with 2 clauses:

ci’="(z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).

"

If ci’ is true, then ci = z1 ∨ z2 must be true



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 3:  k = 3.  No extra variables are needed.  

Keep ci: (z1 ∨ z2 ∨ z3)

"



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:

" (z1 ∨ z2 ∨ yi
1)

   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 

   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4) ⋀" (¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 

   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)

Suppose that there is a valuation 
such that ci’ is true and ci is false. 
Then yi

k must be true for all k, so the 
last clause in ci’ must be false, 
contradiction.



Conclusions

We have shown that 

3SAT is in NP

there exists a polynomial time reduction from SAT to 3SAT.

Therefore, 3SAT is NP-complete. 


