3SAT

Andreas Klappenecker

[partially based on slides by Jennifer Welch]

3SAT

Given a boolean function in conjunctive normal form such that every clause contains exactly three literals, decide whether the formula is satisfiable.
[This a special case of SAT]

Proving NP-Completeness

How do you prove that a decision problem L is NP-complete?
(1) Show that L is in NP.
(2.a) Choose an appropriate known NP-complete language L'.
(2.b) Show L' $\leq_{p} L$

Proof Strategy

(1) 3SAT is in NP, since we can check in polynomial time whether a given truth assignment evaluates to true.
(2.a) Choose SAT as a known NP-complete problem.
(2.b) Describe a reduction from SAT inputs to 3SAT inputs

- computable in polynomial time
- SAT input is satisfiable iff constructed 3SAT input is satisfiable

General Idea of the Reduction

We're given an arbitrary CNF formula $C=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{m}$ over set of variables, where each c_{i} is a clause (a disjunction of literals).

We will replace each clause c_{i} with a conjunction of clauses c_{i}^{\prime}, and may use some extra variables. Each clause in c_{i}^{\prime} will have exactly 3 literals. The transformed input will be conjunction of all the clauses in all the c_{i}^{\prime}.

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 1: $k=1$. Use extra variables $y_{i}{ }^{1}$ and $y_{i}{ }^{2}$. Replace c_{i} with 4 clauses:

$$
\left(z_{1} \vee y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee y_{i}^{1} \vee \neg y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee \neg y_{i}^{2}\right) .
$$

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 2: $k=2$. Use extra variable $y_{i}{ }^{1}$. Replace c_{i} with 2 clauses:

$$
\left(z_{1} \vee z_{2} \vee \neg y_{i}^{1}\right) \wedge\left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) .
$$

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 3: $k=3$. No extra variables are needed.
Keep $c_{i}:\left(\mathbf{z}_{1} \vee \mathbf{z}_{2} \vee \mathbf{z}_{3}\right)$

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 4: $k>3$. Use extra variables $y_{i}^{1}, \ldots, y_{i}^{k-3}$. Replace c_{i} with $k-2$ clauses:

$$
\begin{aligned}
& \left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) \quad \text { Text } \\
& \wedge\left(\neg y_{i}^{1} \vee z_{3} \vee y_{i}^{2}\right) \wedge\left(\neg y_{i}^{2} \vee z_{4} \vee y_{i}^{3}\right) \wedge \ldots \\
& \wedge\left(\neg y_{i}^{k-5} \vee z_{k-3} \vee y_{i}^{k-4}\right) \wedge\left(\neg y_{i}^{k-4} \vee z_{k-2} \vee y_{i}^{k-3}\right) \\
& \wedge\left(\neg y_{i}^{k-3} \vee z_{k-1} \vee z_{k}\right)
\end{aligned}
$$

Polynomial Time Reduction

Each new formula is at most a constant times larger than the original formula, and the translation is straightforward. Therefore, the reduction is polynomial time.

Correctness of the Reduction

Show that CNF formula C is satisfiable iff the $3-C N F$ formula C' constructed is satisfiable.
=>: Suppose that C is satisfiable. We need to construct a satisfying truth assignment for C^{\prime}.

For variables in C^{\prime} that are already in C, we use same truth assignments as for C.

How should we assign T / F to the new variables?

Truth Assignment for New Variables

Let $c_{i}=z_{1} \vee \mathbf{z}_{2} \vee \ldots \vee \mathbf{z}_{k}$
Case 1: $k=1$. Use extra variables y_{i}^{1} and $y_{i}{ }^{2}$. Replace c_{i} with 4 clauses:

$$
\left(z_{1} \vee y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee y_{i}^{1} \vee \neg y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee \neg y_{i}^{2}\right) .
$$

Assign $y_{i}^{\prime} s$ with arbitrary values, as z_{1} is true

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 2: $k=2$. Use extra variable $y_{i}{ }^{1}$. Replace c_{i} with 2 clauses:

$$
\left(z_{1} \vee z_{2} \vee \neg y_{i}^{1}\right) \wedge\left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) .
$$

Assign yis with arbitrary values, as $z_{1} \vee z_{2}$ is true

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 3: $k=3$. No extra variables are needed.
Keep $c_{i}:\left(z_{1} \vee z_{2} \vee z_{3}\right)$

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 4: $k>3$. Use extra variables $y_{i}^{1}, \ldots, y_{i}^{k-3}$. Replace c_{i} with $k-2$ clauses:

$$
\begin{aligned}
& \left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) \\
& \wedge\left(\neg y_{i}{ }^{1} \vee z_{3} \vee y_{i}{ }^{2}\right) \wedge\left(\neg y_{i}^{2} \vee z_{4} \vee y_{i}^{3}\right) \wedge \ldots \\
& \wedge\left(\neg y_{i}^{k-5} \vee z_{k-3} \vee y_{i}^{k-4}\right) \wedge\left(\neg y_{i}^{k-4} \vee z_{k-2} \vee y_{i}^{k-3}\right) \\
& \wedge\left(\neg y_{i}^{k-3} \vee z_{k-1} \vee z_{k}\right)
\end{aligned}
$$

If z_{1} or z_{2} is true, set all yis to false, so all later clauses have a true literal.

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 4: $k>3$. Use extra variables $y_{i}^{1}, \ldots, y_{i}^{k-3}$. Replace c_{i} with $k-2$ clauses:

$$
\begin{aligned}
& \left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) \\
& \wedge\left(\neg y_{i}^{1} \vee z_{3} \vee y_{i}{ }^{2}\right) \wedge\left(\neg y_{i}{ }^{2} \vee z_{4} \vee y_{i}^{3}\right) \wedge \ldots \\
& \wedge\left(\neg y_{i}^{k-5} \vee z_{k-3} \vee y_{i}^{k-4}\right) \wedge\left(\neg y_{i}^{k-4} \vee z_{k-2} \vee y_{i}^{k-3}\right) \\
& \wedge\left(\neg y_{i}^{k-3} \vee z_{k-1} \vee z_{k}\right)
\end{aligned}
$$

If z_{k-1} or z_{k} is the first true literal of c_{i}, set all yís to true, so all earlier clauses have a true literal.

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 4: $k>3$. Use extra variables $y_{i}^{1}, \ldots, y_{i}^{k-3}$. Replace c_{i} with $k-2$ clauses:

$$
\begin{array}{ll}
\left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) & \begin{array}{l}
\text { If first } \\
\text { set all }
\end{array} \\
\wedge\left(\neg y_{i}^{1} \vee z_{3} \vee y_{i}^{2}\right) \wedge\left(\neg y_{i}^{2} \vee z_{4} \vee y_{i}^{3}\right) \wedge \ldots & \text { later } y_{i} \\
\wedge\left(\neg y_{i}^{k-5} \vee z_{k-3} \vee y_{i}^{k-4}\right) \wedge\left(\neg y_{i}^{k-4} \vee z_{k-2} \vee y_{i}^{k-3}\right) \\
\wedge\left(\neg y_{i}^{k-3} \vee z_{k-1} \vee z_{k}\right) &
\end{array}
$$

If first true literal is in between, set all earlier y_{i} 's to true and all later y_{i} 's to false.

Correctness of Reduction

<=: Suppose the newly constructed 3SAT formula C^{\prime} is satisfiable. We must show that the original SAT formula C is also satisfiable.

Use the same satisfying truth assignment for C as for C^{\prime} (ignoring new variables).
Show each original clause has at least one true literal in it.

Original Clause is True

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 1: $k=1$. Use extra variables $y_{i}{ }^{1}$ and $y_{i}{ }^{2}$. Replace c_{i} with 4 clauses:

$$
c_{i}^{\prime}=\left(z_{1} \vee y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee y_{i}^{1} \vee \neg y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee \neg y_{i}^{2}\right) .
$$

If c_{i}^{\prime} is true, then $c_{i}=z_{1}$ must be true, since one pair of literals in $y_{i}{ }^{1}$ and $y_{i}{ }^{2}$ must be true

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 2: $k=2$. Use extra variable $y_{i}{ }^{1}$. Replace c_{i} with 2 clauses:

$$
c_{i}^{\prime}=\left(z_{1} \vee z_{2} \vee \neg y_{i}^{1}\right) \wedge\left(z_{1} \vee z_{2} \vee y_{i}^{1}\right)
$$

If c_{i}^{\prime} is true, then $c_{i}=z_{1} \vee z_{2}$ must be true

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 3: $k=3$. No extra variables are needed.
Keep $c_{i}:\left(z_{1} \vee z_{2} \vee z_{3}\right)$

Reduction from SAT to 3SAT

Let $c_{i}=z_{1} \vee z_{2} \vee \ldots \vee z_{k}$
Case 4: $k>3$. Use extra variables $y_{i}{ }^{1}, \ldots, y_{i}{ }^{k-3}$. Replace c_{i} with $k-2$ clauses:

$$
\begin{aligned}
& \left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) \\
& \wedge\left(\neg y_{i}^{1} \vee z_{3} \vee y_{i}^{2}\right) \wedge\left(\neg y_{i}^{2} \vee z_{4} \vee y_{i}^{3}\right) \wedge \ldots \begin{array}{l}
\text { last clause in } c_{i} . \\
\text { contradiction. }
\end{array} \\
& \wedge\left(\neg y_{i}^{k-5} \vee z_{k-3} \vee y_{i}^{k-4}\right) \wedge\left(\neg y_{i}^{k-4} \vee z_{k-2} \vee y_{i}^{k-3}\right) \\
& \wedge\left(\neg y_{i}^{k-3} \vee z_{k-1} \vee z_{k}\right)
\end{aligned}
$$

Suppose that there is a valuation such that c_{i}^{\prime} is true and c_{i} is false. Then $y_{i}{ }^{k}$ must be true for all k, so the last clause in c_{i}^{\prime} must be false,

Conclusions

We have shown that

- 3SAT is in NP
- there exists a polynomial time reduction from SAT to 3SAT.

Therefore, 3SAT is NP-complete.

