
Polynomial-Time Reductions
Andreas Klappenecker

[partially based on slides by Professor Welch]



Formal Languages and 
Decision Problems



Languages and Decision Problems

Language:  A set of strings over some alphabet

Decision problem:  A decision problem can be viewed as the formal 
language consisting of exactly those strings that encode YES 
instances of the problem.

Yes instance:                   No instance:1
4 2

4 2
1 4

1 3
4
1 4 ? 2

4



The Language Prime

Let us encode positive integers in binary representation.

The decision problem “Is x a prime?” has the following 
representation as a formal language:

LPrimes = {10,11,101,111,…} 

where 10 encodes 2, 11 encodes 3, 101 encodes 5, and so on.



Polynomial Reduction



Polynomial Reduction

Let L1 be a language over an alphabet V1.

Let L2 be a language over an alphabet V2.

A polynomial-time reduction from L1 to L2 is a function       
f: V1* -> V2* such that 

(1) f is computable in polynomial time

(2) for all x in V1*, x is in L1 if and only if f(x) is in L2
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Polynomial Reduction

• YES instances map to YES instances

• NO instances map to NO instances

• computable in polynomial time

• Notation:  L1 ≤p L2

• [Think:  L2 is at least as hard as L1]



Polynomial Reduction Theorem
Theorem If L1 ≤p L2 and L2 is in P, then L1 is in P.

Proof. Let A2 be a polynomial time algorithm for L2. Here is a polynomial 
time algorithm A1 for L1.

•input: x

•compute f(x)

•run A2 on input f(x)

•return whatever A2 returns
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Polynomial Reduction Theorem
Theorem If L1 ≤p L2 and L2 is in P, then L1 is in P.

Proof. Let A2 be a polynomial time algorithm for L2. Here is a polynomial 
time algorithm A1 for L1.

•input: x

•compute f(x)

•run A2 on input f(x)

•return whatever A2 returns

|x| = n
takes p(n) time

takes q(p(n)) time

takes O(1) time



Implications

• Suppose that L1 ≤p L2 

• If there is a polynomial time algorithm for L2, then there is a 
polynomial time algorithm for L1.

• If there is no polynomial time algorithm for L1, then there is no 
polynomial time algorithm for L2.



HC ≤p TSP



Traveling Salesman Problem

Suppose that we are given a set of cities, distances between all 
pairs of cities, and a distance bound B. 

Traveling Salesman Problem: Does there exist a route that visits 
each city exactly once and returns to the origin city with a total 
travel distance <= B? 

TSP is in NP: Given a candidate solution (a tour), add up all the 
distances and check if total is at most B.



Example of a Reduction
Theorem  HC ≤p TSP.

Proof.  Given a graph G, the Hamiltonian circuit decision problem 
tries to decide whether or not G has a Hamiltonian circuit. 

A polynomial reduction from HC to TSP has to transform G into an 
input for the TSP decision problem. More precisely, the graph G 
needs to be transformed in polynomial time into a configuration of 
(cities, distances, and bound B) such that 

G has a Hamiltonian circuit iff the resulting TSP input has a tour of 
cities that has a total distance <= B. 



The Reduction
Given undirected graph G = (V,E) with m nodes, construct a 
TSP input like this:

• set of m cities, labeled with names of nodes in V

• distance between u and v is 1 if (u,v) is in E, and is 2 otherwise

• bound B = m

This TSP input be constructed in time polynomial in the size 
of G. 



Figure for Reduction
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Figure for Reduction

1 2

4 3

dist(1,2) = 1
dist(1,3) = 1
dist(2,4) = 2
dist(2,3) = 2
dist(1,4) = 1
dist(3,4) = 1
bound = 4

HC input

no Hamiltonian cycle no tour w/ distance at most 4

TSP input



Correctness of the Reduction

• Check that input G is in HC (has a Hamiltonian cycle) if and only if 
the input constructed is in TSP (has a tour of length at most m).

• => Suppose G has a Hamiltonian cycle v1, v2, …, vm, v1.  

• Then in the TSP input, v1, v2, …, vm, v1 is a tour (visits every city 
once and returns to the start) and its distance is 1⋅m = B.



Correctness of the Reduction

• <=: Suppose the TSP input constructed has a tour of total length at 
most m. 

• Since all distances are either 1 or 2, and there are m of them in 
the tour, all distances in the tour must be 1.

• Thus each consecutive pair of cities in the tour correspond to an 
edge in G.

• Thus the tour corresponds to a Hamiltonian cycle in G.



Implications

• If there is a polynomial time algorithm for TSP, then there is a 
polynomial time algorithm for HC.

• If there is no polynomial time algorithm for HC, then there is no 
polynomial time algorithm TSP.
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