
Polynomial-Time Reductions
Andreas Klappenecker

[partially based on slides by Professor Welch]

Formal Languages and
Decision Problems

Languages and Decision Problems

Language: A set of strings over some alphabet

Decision problem: A decision problem can be viewed as the formal
language consisting of exactly those strings that encode YES
instances of the problem.

Yes instance: No instance:1
4 2

4 2
1 4

1 3
4
1 4 ? 2

4

The Language Prime

Let us encode positive integers in binary representation.

The decision problem “Is x a prime?” has the following
representation as a formal language:

LPrimes = {10,11,101,111,…}

where 10 encodes 2, 11 encodes 3, 101 encodes 5, and so on.

Polynomial Reduction

Polynomial Reduction

Let L1 be a language over an alphabet V1.

Let L2 be a language over an alphabet V2.

A polynomial-time reduction from L1 to L2 is a function
f: V1* -> V2* such that

(1) f is computable in polynomial time

(2) for all x in V1*, x is in L1 if and only if f(x) is in L2

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

Polynomial Reduction

• YES instances map to YES instances

• NO instances map to NO instances

• computable in polynomial time

• Notation: L1 ≤p L2

• [Think: L2 is at least as hard as L1]

Polynomial Reduction Theorem
Theorem If L1 ≤p L2 and L2 is in P, then L1 is in P.

Proof. Let A2 be a polynomial time algorithm for L2. Here is a polynomial
time algorithm A1 for L1.

•input: x

•compute f(x)

•run A2 on input f(x)

•return whatever A2 returns

Polynomial Reduction Theorem
Theorem If L1 ≤p L2 and L2 is in P, then L1 is in P.

Proof. Let A2 be a polynomial time algorithm for L2. Here is a polynomial
time algorithm A1 for L1.

•input: x

•compute f(x)

•run A2 on input f(x)

•return whatever A2 returns

|x| = n

Polynomial Reduction Theorem
Theorem If L1 ≤p L2 and L2 is in P, then L1 is in P.

Proof. Let A2 be a polynomial time algorithm for L2. Here is a polynomial
time algorithm A1 for L1.

•input: x

•compute f(x)

•run A2 on input f(x)

•return whatever A2 returns

|x| = n
takes p(n) time

Polynomial Reduction Theorem
Theorem If L1 ≤p L2 and L2 is in P, then L1 is in P.

Proof. Let A2 be a polynomial time algorithm for L2. Here is a polynomial
time algorithm A1 for L1.

•input: x

•compute f(x)

•run A2 on input f(x)

•return whatever A2 returns

|x| = n
takes p(n) time

takes q(p(n)) time

Polynomial Reduction Theorem
Theorem If L1 ≤p L2 and L2 is in P, then L1 is in P.

Proof. Let A2 be a polynomial time algorithm for L2. Here is a polynomial
time algorithm A1 for L1.

•input: x

•compute f(x)

•run A2 on input f(x)

•return whatever A2 returns

|x| = n
takes p(n) time

takes q(p(n)) time

takes O(1) time

Implications

• Suppose that L1 ≤p L2

• If there is a polynomial time algorithm for L2, then there is a
polynomial time algorithm for L1.

• If there is no polynomial time algorithm for L1, then there is no
polynomial time algorithm for L2.

HC ≤p TSP

Traveling Salesman Problem

Suppose that we are given a set of cities, distances between all
pairs of cities, and a distance bound B.

Traveling Salesman Problem: Does there exist a route that visits
each city exactly once and returns to the origin city with a total
travel distance <= B?

TSP is in NP: Given a candidate solution (a tour), add up all the
distances and check if total is at most B.

Example of a Reduction
Theorem HC ≤p TSP.

Proof. Given a graph G, the Hamiltonian circuit decision problem
tries to decide whether or not G has a Hamiltonian circuit.

A polynomial reduction from HC to TSP has to transform G into an
input for the TSP decision problem. More precisely, the graph G
needs to be transformed in polynomial time into a configuration of
(cities, distances, and bound B) such that

G has a Hamiltonian circuit iff the resulting TSP input has a tour of
cities that has a total distance <= B.

The Reduction
Given undirected graph G = (V,E) with m nodes, construct a
TSP input like this:

• set of m cities, labeled with names of nodes in V

• distance between u and v is 1 if (u,v) is in E, and is 2 otherwise

• bound B = m

This TSP input be constructed in time polynomial in the size
of G.

Figure for Reduction

1 2

4 3

dist(1,2) = 1
dist(1,3) = 1
dist(1,4) = 1
dist(2,3) = 1
dist(2,4) = 2
dist(3,4) = 1
bound = 4

HC input TSP input

Hamiltonian cycle: 1,2,3,4,1

tour w/ distance 4: 1,2,3,4,1

Figure for Reduction

1 2

4 3

dist(1,2) = 1
dist(1,3) = 1
dist(2,4) = 2
dist(2,3) = 2
dist(1,4) = 1
dist(3,4) = 1
bound = 4

HC input

no Hamiltonian cycle no tour w/ distance at most 4

TSP input

Correctness of the Reduction

• Check that input G is in HC (has a Hamiltonian cycle) if and only if
the input constructed is in TSP (has a tour of length at most m).

• => Suppose G has a Hamiltonian cycle v1, v2, …, vm, v1.

• Then in the TSP input, v1, v2, …, vm, v1 is a tour (visits every city
once and returns to the start) and its distance is 1⋅m = B.

Correctness of the Reduction

• <=: Suppose the TSP input constructed has a tour of total length at
most m.

• Since all distances are either 1 or 2, and there are m of them in
the tour, all distances in the tour must be 1.

• Thus each consecutive pair of cities in the tour correspond to an
edge in G.

• Thus the tour corresponds to a Hamiltonian cycle in G.

Implications

• If there is a polynomial time algorithm for TSP, then there is a
polynomial time algorithm for HC.

• If there is no polynomial time algorithm for HC, then there is no
polynomial time algorithm TSP.

Transitivity of Reductions

Theorem: If L1 ≤p L2 and L2 ≤p L3,

" then L1 ≤p L3.

Proof:

L1 L2 L3

f g

Transitivity of Reductions

Theorem: If L1 ≤p L2 and L2 ≤p L3,

" then L1 ≤p L3.

Proof:

L1 L2 L3

f g

g(f)

