Polynomial-Time Reductions

Andreas Klappenecker
[partially based on slides by Professor Welch]

Formal Languages and Decision Problems

Languages and Decision Problems

Language: A set of strings over some alphabet
Decision problem: A decision problem can be viewed as the formal language consisting of exactly those strings that encode YES instances of the problem.

Yes instance:

No instance:

The Language Prime

Let us encode positive integers in binary representation.
The decision problem "Is \times a prime?" has the following representation as a formal language:

LPrimes $=\{10,11,101,111, . .$.
where 10 encodes 2, 11 encodes 3,101 encodes 5, and so on.

Polynomial Reduction

Polynomial Reduction

Let L_{1} be a language over an alphabet V_{1}.
Let L_{2} be a language over an alphabet V_{2}.
A polynomial-time reduction from L_{1} to L_{2} is a function
$f: V_{1}{ }^{*} \rightarrow V_{2}{ }^{*}$ such that
(1) f is computable in polynomial time
(2) for all x in $V_{1}{ }^{*}, x$ is in L_{1} if and only if $f(x)$ is in L_{2}

Polynomial Reduction

all strings over L_{2} 's alphabet

Polynomial Reduction

Polynomial Reduction

- YES instances map to YES instances
- NO instances map to NO instances
- computable in polynomial time
- Notation: $L_{1} \leq L_{p}$
- [Think: L_{2} is at least as hard as L_{1}]

Polynomial Reduction Theorem

Theorem If $L_{1} \leq_{p} L_{2}$ and L_{2} is in P, then L_{1} is in P.
Proof. Let A_{2} be a polynomial time algorithm for L_{2}. Here is a polynomial time algorithm A_{1} for L_{1}.
-input: x
-compute $f(x)$
-run A_{2} on input $f(x)$
-return whatever A_{2} returns

Polynomial Reduction Theorem

Theorem If $L_{1} \leq_{p} L_{2}$ and L_{2} is in P, then L_{1} is in P.
Proof. Let A_{2} be a polynomial time algorithm for L_{2}. Here is a polynomial time algorithm A_{1} for L_{1}.
-input: x

$$
|x|=n
$$

-compute $f(x)$
-run A_{2} on input $f(x)$
-return whatever A_{2} returns

Polynomial Reduction Theorem

Theorem If $L_{1} \leq_{p} L_{2}$ and L_{2} is in P, then L_{1} is in P.
Proof. Let A_{2} be a polynomial time algorithm for L_{2}. Here is a polynomial time algorithm A_{1} for L_{1}.
-input: x
-compute $f(x)$
-run A_{2} on input $f(x)$
-return whatever A_{2} returns
$|x|=n$
takes $p(n)$ time

Polynomial Reduction Theorem

Theorem If $L_{1} \leq_{p} L_{2}$ and L_{2} is in P, then L_{1} is in P.
Proof. Let A_{2} be a polynomial time algorithm for L_{2}. Here is a polynomial time algorithm A_{1} for L_{1}.
-input: x
-compute $f(x)$
-run A_{2} on input $f(x)$
-return whatever A_{2} returns
$|x|=n$
takes $\mathrm{p}(\mathrm{n})$ time
takes $q(p(n))$ time

Polynomial Reduction Theorem

Theorem If $L_{1} \leq_{p} L_{2}$ and L_{2} is in P, then L_{1} is in P.
Proof. Let A_{2} be a polynomial time algorithm for L_{2}. Here is a polynomial time algorithm A_{1} for L_{1}.
-input: x
-compute $f(x)$
-run A_{2} on input $f(x)$
-return whatever A_{2} returns
$|x|=n$
takes $p(n)$ time
takes $q(p(n))$ time
takes $O(1)$ time

Implications

- Suppose that $L_{1} \leq_{p} L_{2}$
- If there is a polynomial time algorithm for L_{2}, then there is a polynomial time algorithm for L_{1}.
- If there is no polynomial time algorithm for L_{1}, then there is no polynomial time algorithm for L_{2}.

$H C \leq_{p} T S P$

Traveling Salesman Problem

Suppose that we are given a set of cities, distances between all pairs of cities, and a distance bound B.

Traveling Salesman Problem: Does there exist a route that visits each city exactly once and returns to the origin city with a total travel distance <= B?

TSP is in NP: Given a candidate solution (a tour), add up all the distances and check if total is at most B.

Example of a Reduction

Theorem HC $\leq_{p} T S P$.
Proof. Given a graph G, the Hamiltonian circuit decision problem tries to decide whether or not G has a Hamiltonian circuit.

A polynomial reduction from HC to TSP has to transform G into an input for the TSP decision problem. More precisely, the graph G needs to be transformed in polynomial time into a configuration of (cities, distances, and bound B) such that

G has a Hamiltonian circuit iff the resulting TSP input has a tour of cities that has a total distance $<=\mathrm{B}$.

The Reduction

Given undirected graph $G=(V, E)$ with m nodes, construct a TSP input like this:

- set of m cities, labeled with names of nodes in V
- distance between u and v is 1 if (u, v) is in E, and is 2 otherwise
- bound B = m

This TSP input be constructed in time polynomial in the size of G.

Figure for Reduction

HC input		$\operatorname{dist}(1,2)=1$
		$\operatorname{dist}(1,3)=1$$\operatorname{dist}(1,4)=1$
		$\operatorname{dist}(2,3)=1$
		$\operatorname{dist}(2,4)=2$
Hamiltor	an cycle: 1,2,3,4,1	$\operatorname{dist}(3,4)=1$

tour w/ distance 4: 1,2,3,4,1

Figure for Reduction

HC input

no Hamiltonian cycle
no tour w/ distance at most 4

Correctness of the Reduction

- Check that input G is in HC (has a Hamiltonian cycle) if and only if the input constructed is in TSP (has a tour of length at most m).
- \Rightarrow Suppose G has a Hamiltonian cycle $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}, \mathrm{v}_{1}$.
- Then in the TSP input, $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}, \mathrm{v}_{1}$ is a tour (visits every city once and returns to the start) and its distance is $1 \cdot \mathrm{~m}=\mathrm{B}$.

Correctness of the Reduction

- <=: Suppose the TSP input constructed has a tour of total length at most m.
- Since all distances are either 1 or 2 , and there are m of them in the tour, all distances in the tour must be 1.
- Thus each consecutive pair of cities in the tour correspond to an edge in G .
- Thus the tour corresponds to a Hamiltonian cycle in G.

Implications

- If there is a polynomial time algorithm for TSP, then there is a polynomial time algorithm for HC.
- If there is no polynomial time algorithm for HC, then there is no polynomial time algorithm TSP.

Transitivity of Reductions

Theorem: If $L_{1} \leq_{p} L_{2}$ and $L_{2} \leq_{p} L_{3}$,
then $L_{1} \leq_{p} L_{3}$.
Proof:

Transitivity of Reductions

Theorem: If $L_{1} \leq_{p} L_{2}$ and $L_{2} \leq_{p} L_{3^{\prime}}$
then $L_{1} \leq p L_{3}$.
Proof:

