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Motivation

There are few algorithms that had more impact on modern society 
than the fast Fourier transform and its relatives. 

The applications of the fast Fourier transform touch nearly every 
area of science and engineering in some way. 

For example, it changed medicine by enabling magnetic resonance 
imaging.  It sparked a revolution in the music industry. It even finds 
uses in applications such as the fast multiplication of large integers. 



A Brief History

Gauss (1805, 1866).  Used the FFT in calculations in astronomy. 

Danielson-Lanczos (1942).  Gave an efficient algorithm, but low 
impact as digital computer were just emerging. 

Cooley-Tukey (1965).  Rediscovered and popularized FFT. The 
importance was immediately recognized, and this is one of the 
most widely cited papers in science and engineering. 



Key Property

The fast Fourier transform allows one to quickly multiply 
polynomials, that is, given

A(x) = a0 + a1x + ... + an-1xn-1 

B(x) = b0 + b1x + ... + bn-1xn-1

calculate C(x) = A(x)B(x) = ∑i,j aibj xi+j = ∑k (∑i ak-i bi ) xk



Representations of Polynomials



Coefficient Representation

A polynomial 

A(x) = a0 + a1x + ... + an-1xn-1

can be represented in various ways. The most common way is 
to specify its coefficients (a0, a1, ... , an-1);  this is called the 
coefficient representation. 



Operations in C. Representation

Given polynomials in coefficient representation:  

A(x) = a0 + a1x + ... + an-1xn-1 and B(x) = b0 + b1x + ... + bn-1xn-1

Addition in O(n): 

A(x)+B(x) = (a0 +b0) + (a1+b1)x + ... + (an-1+bn-1)xn-1

Evaluation in O(n) using Horner’s scheme:

A(w) = a0 + (a1+ ...(an-3 + (an-2 + an-1w)w)w...)w



Operations in C. Representation

Given polynomials in coefficient representation:  

A(x) = a0 + a1x + ... + an-1xn-1 and B(x) = b0 + b1x + ... + bn-1xn-1

Multiplication in O(n2): 

A(x)B(x) = ∑i,j aibj xi+j = ∑k (∑i ak-i bi ) xk



Point-Value Representation

A polynomial 

A(x) = a0 + a1x + ... + an-1xn-1

can be understood as a function x -> y = A(x). We can specify a 
polynomial by n point and value pairs:

{ (x0, y0), (x1, y1), ... , (xn-1, yn-1) } 

A polynomial of degree n-1 is uniquely specified by giving n point-
value pairs for n distinct points. 
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Operations in PV Representation

Suppose that we are given two polynomials in PV representation:

A(x): { (x0, y0), (x1, y1), ... , (xn-1, yn-1) } 

B(x): { (x0, z0), (x1, z1), ... , (xn-1, zn-1) } 

Addition in O(n):

A(x) + B(x): { (x0, y0+z0), (x1, y1+z1), ... , (xn-1, yn-1+zn-1) } 

Multiplication in O(n), but need at least 2n-1 distinct points:

A(x)B(x): { (x0, y0z0), (x1, y1z1), ... , (x2n-2, y2n-2z2n-2) }



Operations in PV Representation

Evaluate. We can evaluate a polynomial in PV representation using 
some interpolation formula. Given

A(x): { (x0, y0), (x1, y1), ... , (xn-1, yn-1) } 

one can evaluate at a point w e.g. using Lagrange’s interpolation 
formula

A(w) = ∑k yk ∏j: k≠j  (w-xj)/(xk-xj)

However, evaluation uses O(n2) operations. 



Tradeoffs

Coefficient

Representation

O(n2)

Multiply

O(n)

Evaluate

Point-value O(n) O(n2)



Converting between the 
Representations

For a polynomial A(x) = a0 + a1x + ... + an-1xn-1 of degree n-1, a 
conversion from coefficient representation to p.v. representation at n 
distinct points x0, x1, ..., xn-1 can be done as follows: 

The Vandermonde matrix is invertible iff the xi’s are distinct. 

Drawback: Conversions are not fast! 
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Divide-and-Conquer



Motivation

We can speed up the evaluation by choosing suitable points 
x0,...,xn-1 that have sufficient structure so that we can reuse 
computational results. 



Divide

We can divide the polynomial A(x) by splitting it into its even and 
odd powers: 

A(x) = Aeven(x2) + x Aodd(x2) 

 

For example, if A(x) = a0+a1x+...+a7x7 then 

Aeven(x) = a0+a2x+a4x2+a6x3 and Aodd(x) =  a1+a3x+a5x2+a7x3

a0 a1 a2 a3 a4 a5 a6 a7



Key Idea

Divide A(x) =  a0 + a1x + a2x2 + a3x3 + a4x4  + a5x5  + a6x6  + a7x7 into 
even and odd powers: 

Aeven(x) = a0 + a2x + a4x2 + a6x3 and 

Aodd (x)  =  a1 + a3x + a5x2 + a7x3.

Evaluate at two points w and -w by evaluating two smaller polys at w2

A(w) = Aeven(w2) + w Aodd(w2).

A(-w) = Aeven(w2) - w Aodd(w2).



Example

Choose w2=1, so that its square root w=1 or w=-1. Then 

A(1) = Aeven(1) +  Aodd(1).

A(-1) = Aeven(1) - Aodd(1).

So to evaluate A(x) at 1 and -1, we only need to evaluate two 
polynomials Aeven(1) and Aodd(1).

Benefit: Evaluation of both Aeven(x) and Aodd(x) has the same 
complexity as a single evaluation of A(x). 



The FFT Trick

Our goal is to repeatedly use the same trick, so we need to use 
square roots of 1 (so 1 and -1) and square roots of -1 (so i and -i). 

A( 1) =  Aeven(1)   +  1 Aodd(1) 

A(-1) =  Aeven(1)   -  1 Aodd(1) 

A( i)  = Aeven(-1)  +  i Aodd(-1)

A(-i)  = Aeven(-1)  -  i Aodd(-1) 
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Roots of Unity

The evaluation at n=2k different points can be accomplished by 
repeatedly taking the square roots, starting with 1. 

{1} -> {1, -1} -> {1, -1, i, -i} -> ... -> { 1, ω, ω2, ... ωn-1 } 

where ω is a primitive n-th root of unity, that is, 

ωn=1 and ωm ≠ 1 for 1 <= m < n. We can choose ω = exp(2πi/n). 



Root of Unity

Suppose that n is even. 

An n-th root of unity ω satisfies ωn/2 = -1. 

Indeed, (ωn/2)2= ωn = 1, so  ωn/2 must be equal to 1 or -1. However, 1 
is impossible, as ω is a primitive n-th root of unity, hence the claim.

Consequence: ωn/2+j= -ωj for all j. 

Notice that { (ωk)2 : 0 <= k < n } =: { νm : 0 <= m < n/2 } is the set 
of all n/2-th roots of unity. 



Fast Fourier Transform

Evaluate a degree n-1 polynomial A(x) = a0 + ... + an-1 xn-1 at its nth roots of 
unity: ω0, ω1, …, ωn-1.

Divide.  Divide the polynomial into even and odd powers.

A(x) = Aeven(x2) + x Aodd(x2).

Conquer.  Evaluate Aeven(x) and Aodd(x) at the ½nth roots of unity: ν0, ν1, …, νn/2-1.

Combine.  

A(ωk)    = Aeven(νk) + ωk Aodd(νk),   0 ≤ k < n/2

A(ωk+n/2) = Aeven(νk) - ωk Aodd(νk),   0 ≤ k < n/2



FFT Algorithm
FFT(n, a0,a1,…,an-1) {

   if (n == 1) return a0
 
   (e0,e1,…,en/2-1) ← FFT(n/2, a0,a2,a4,…,an-2)

   (d0,d1,…,dn/2-1) ← FFT(n/2, a1,a3,a5,…,an-1)

   for k = 0 to n/2 - 1 {
      ωk ← e2πik/n

      yk     ← ek + ωk dk
      yk+n/2 ← ek - ωk dk
   }

   return (y0,y1,…,yn-1)

}



Running Time of FFT

We have 

T(n) = 2T(n/2) + Θ(n) 

Therefore, the running time is T(n) = Θ(n log n). 



Summary

The FFT evaluates a polynomial of degree n-1 at n-th roots of 
unity in O(n log n) steps. 

Inverse of FFT just as fast. 

Can multiply two polynomials of degree n-1 in O(n log n) time 
using FFT of length 2n. 

Find more details in CLRS or Kleinberg/Tardos. 


