
The Fast Fourier Transform
Andreas Klappenecker

Motivation

There are few algorithms that had more impact on modern society
than the fast Fourier transform and its relatives.

The applications of the fast Fourier transform touch nearly every
area of science and engineering in some way.

For example, it changed medicine by enabling magnetic resonance
imaging. It sparked a revolution in the music industry. It even finds
uses in applications such as the fast multiplication of large integers.

A Brief History

Gauss (1805, 1866). Used the FFT in calculations in astronomy.

Danielson-Lanczos (1942). Gave an efficient algorithm, but low
impact as digital computer were just emerging.

Cooley-Tukey (1965). Rediscovered and popularized FFT. The
importance was immediately recognized, and this is one of the
most widely cited papers in science and engineering.

Key Property

The fast Fourier transform allows one to quickly multiply
polynomials, that is, given

A(x) = a0 + a1x + ... + an-1xn-1

B(x) = b0 + b1x + ... + bn-1xn-1

calculate C(x) = A(x)B(x) = ∑i,j aibj xi+j = ∑k (∑i ak-i bi) xk

Representations of Polynomials

Coefficient Representation

A polynomial

A(x) = a0 + a1x + ... + an-1xn-1

can be represented in various ways. The most common way is
to specify its coefficients (a0, a1, ... , an-1); this is called the
coefficient representation.

Operations in C. Representation

Given polynomials in coefficient representation:

A(x) = a0 + a1x + ... + an-1xn-1 and B(x) = b0 + b1x + ... + bn-1xn-1

Addition in O(n):

A(x)+B(x) = (a0 +b0) + (a1+b1)x + ... + (an-1+bn-1)xn-1

Evaluation in O(n) using Horner’s scheme:

A(w) = a0 + (a1+ ...(an-3 + (an-2 + an-1w)w)w...)w

Operations in C. Representation

Given polynomials in coefficient representation:

A(x) = a0 + a1x + ... + an-1xn-1 and B(x) = b0 + b1x + ... + bn-1xn-1

Multiplication in O(n2):

A(x)B(x) = ∑i,j aibj xi+j = ∑k (∑i ak-i bi) xk

Point-Value Representation

A polynomial

A(x) = a0 + a1x + ... + an-1xn-1

can be understood as a function x -> y = A(x). We can specify a
polynomial by n point and value pairs:

{ (x0, y0), (x1, y1), ... , (xn-1, yn-1) }

A polynomial of degree n-1 is uniquely specified by giving n point-
value pairs for n distinct points.

Point-Value Representation

A polynomial

A(x) = a0 + a1x + ... + an-1xn-1

can be understood as a function x -> y = A(x). We can specify a
polynomial by n point and value pairs:

{ (x0, y0), (x1, y1), ... , (xn-1, yn-1) }

A polynomial of degree n-1 is uniquely specified by giving n point-
value pairs for n distinct points.

Operations in PV Representation

Suppose that we are given two polynomials in PV representation:

A(x): { (x0, y0), (x1, y1), ... , (xn-1, yn-1) }

B(x): { (x0, z0), (x1, z1), ... , (xn-1, zn-1) }

Addition in O(n):

A(x) + B(x): { (x0, y0+z0), (x1, y1+z1), ... , (xn-1, yn-1+zn-1) }

Multiplication in O(n), but need at least 2n-1 distinct points:

A(x)B(x): { (x0, y0z0), (x1, y1z1), ... , (x2n-2, y2n-2z2n-2) }

Operations in PV Representation

Evaluate. We can evaluate a polynomial in PV representation using
some interpolation formula. Given

A(x): { (x0, y0), (x1, y1), ... , (xn-1, yn-1) }

one can evaluate at a point w e.g. using Lagrange’s interpolation
formula

A(w) = ∑k yk ∏j: k≠j (w-xj)/(xk-xj)

However, evaluation uses O(n2) operations.

Tradeoffs

Coefficient

Representation

O(n2)

Multiply

O(n)

Evaluate

Point-value O(n) O(n2)

Converting between the
Representations

For a polynomial A(x) = a0 + a1x + ... + an-1xn-1 of degree n-1, a
conversion from coefficient representation to p.v. representation at n
distinct points x0, x1, ..., xn-1 can be done as follows:

The Vandermonde matrix is invertible iff the xi’s are distinct.

Drawback: Conversions are not fast!





y0
y1
...

yn−1




=





1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1









a0
a1
...

an−1





Converting between the
Representations

For a polynomial A(x) = a0 + a1x + ... + an-1xn-1 of degree n-1, a
conversion from coefficient representation to p.v. representation at n
distinct points x0, x1, ..., xn-1 can be done as follows:

The Vandermonde matrix is invertible iff the xi’s are distinct.

Drawback: Conversions are not fast!





y0
y1
...

yn−1




=





1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1









a0
a1
...

an−1





PV CPV
O(n2)

O(n3)

The Fast Fourier Transform II
Andreas Klappenecker

Divide-and-Conquer

Motivation

We can speed up the evaluation by choosing suitable points
x0,...,xn-1 that have sufficient structure so that we can reuse
computational results.

Divide

We can divide the polynomial A(x) by splitting it into its even and
odd powers:

A(x) = Aeven(x2) + x Aodd(x2)

For example, if A(x) = a0+a1x+...+a7x7 then

Aeven(x) = a0+a2x+a4x2+a6x3 and Aodd(x) = a1+a3x+a5x2+a7x3

a0 a1 a2 a3 a4 a5 a6 a7

Key Idea

Divide A(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 into
even and odd powers:

Aeven(x) = a0 + a2x + a4x2 + a6x3 and

Aodd (x) = a1 + a3x + a5x2 + a7x3.

Evaluate at two points w and -w by evaluating two smaller polys at w2

A(w) = Aeven(w2) + w Aodd(w2).

A(-w) = Aeven(w2) - w Aodd(w2).

Example

Choose w2=1, so that its square root w=1 or w=-1. Then

A(1) = Aeven(1) + Aodd(1).

A(-1) = Aeven(1) - Aodd(1).

So to evaluate A(x) at 1 and -1, we only need to evaluate two
polynomials Aeven(1) and Aodd(1).

Benefit: Evaluation of both Aeven(x) and Aodd(x) has the same
complexity as a single evaluation of A(x).

The FFT Trick

Our goal is to repeatedly use the same trick, so we need to use
square roots of 1 (so 1 and -1) and square roots of -1 (so i and -i).

A(1) = Aeven(1) + 1 Aodd(1)

A(-1) = Aeven(1) - 1 Aodd(1)

A(i) = Aeven(-1) + i Aodd(-1)

A(-i) = Aeven(-1) - i Aodd(-1)

The FFT Trick

Our goal is to repeatedly use the same trick, so we need to use
square roots of 1 (so 1 and -1) and square roots of -1 (so i and -i).

A(1) = Aeven(1) + 1 Aodd(1)

A(-1) = Aeven(1) - 1 Aodd(1)

A(i) = Aeven(-1) + i Aodd(-1)

A(-i) = Aeven(-1) - i Aodd(-1)

 Aeven(1) = Aeven,even(1) + Aeven,odd(1)
 Aeven(-1) = Aeven,even(1) - Aeven,odd(1)

The FFT Trick

Our goal is to repeatedly use the same trick, so we need to use
square roots of 1 (so 1 and -1) and square roots of -1 (so i and -i).

A(1) = Aeven(1) + 1 Aodd(1)

A(-1) = Aeven(1) - 1 Aodd(1)

A(i) = Aeven(-1) + i Aodd(-1)

A(-i) = Aeven(-1) - i Aodd(-1)

 Aeven(1) = Aeven,even(1) + Aeven,odd(1)
 Aeven(-1) = Aeven,even(1) - Aeven,odd(1)

 Aodd(1) = Aodd,even(1) + Aodd,odd(1)
 Aodd(-1) = Aodd,even(1) - Aodd,odd(1)

Roots of Unity

The evaluation at n=2k different points can be accomplished by
repeatedly taking the square roots, starting with 1.

{1} -> {1, -1} -> {1, -1, i, -i} -> ... -> { 1, ω, ω2, ... ωn-1 }

where ω is a primitive n-th root of unity, that is,

ωn=1 and ωm ≠ 1 for 1 <= m < n. We can choose ω = exp(2πi/n).

Root of Unity

Suppose that n is even.

An n-th root of unity ω satisfies ωn/2 = -1.

Indeed, (ωn/2)2= ωn = 1, so ωn/2 must be equal to 1 or -1. However, 1
is impossible, as ω is a primitive n-th root of unity, hence the claim.

Consequence: ωn/2+j= -ωj for all j.

Notice that { (ωk)2 : 0 <= k < n } =: { νm : 0 <= m < n/2 } is the set
of all n/2-th roots of unity.

Fast Fourier Transform

Evaluate a degree n-1 polynomial A(x) = a0 + ... + an-1 xn-1 at its nth roots of
unity: ω0, ω1, …, ωn-1.

Divide. Divide the polynomial into even and odd powers.

A(x) = Aeven(x2) + x Aodd(x2).

Conquer. Evaluate Aeven(x) and Aodd(x) at the ½nth roots of unity: ν0, ν1, …, νn/2-1.

Combine.

A(ωk) = Aeven(νk) + ωk Aodd(νk), 0 ≤ k < n/2

A(ωk+n/2) = Aeven(νk) - ωk Aodd(νk), 0 ≤ k < n/2

FFT Algorithm
FFT(n, a0,a1,…,an-1) {

 if (n == 1) return a0

 (e0,e1,…,en/2-1) ← FFT(n/2, a0,a2,a4,…,an-2)

 (d0,d1,…,dn/2-1) ← FFT(n/2, a1,a3,a5,…,an-1)

 for k = 0 to n/2 - 1 {
 ωk ← e2πik/n

 yk ← ek + ωk dk
 yk+n/2 ← ek - ωk dk
 }

 return (y0,y1,…,yn-1)

}

Running Time of FFT

We have

T(n) = 2T(n/2) + Θ(n)

Therefore, the running time is T(n) = Θ(n log n).

Summary

The FFT evaluates a polynomial of degree n-1 at n-th roots of
unity in O(n log n) steps.

Inverse of FFT just as fast.

Can multiply two polynomials of degree n-1 in O(n log n) time
using FFT of length 2n.

Find more details in CLRS or Kleinberg/Tardos.

