Problem Set 9

Due dates: Electronic submission of this homework is due on Thursday 11/9/2017 before 11:00am on ecampus, a signed paper copy of the pdf file is due on $\mathbf{1 1 / 9 / 2 0 1 7}$ at the beginning of class.

Name: (put your name here)

Resources. (All people, books, articles, web pages, etc. that have been consulted when producing your answers to this homework)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature:

Problem 1 (10 points). Solve Exercise 2.7 of the randomized algorithms lecture notes (on perusall.com).

Solution.

Problem 2 (10 points). Solve Exercise 2.8 of the randomized algorithms lecture notes (on perusall.com).

Solution.

Problem 3 (20 points). Solve Exercise 2.9 of the randomized algorithms lecture notes (on perusall.com).

Solution.

Problem 4 (10 points). Suppose that the running time of a randomized algorithm is modeled by the random variable X. You have determined the expected running time $\mathrm{E}[X]$. Use Markov's inequality to bound the probability that an execution of the randomized algorithm equals or exceeds $(1+\epsilon) \mathrm{E}[X]$.

Solution.

Problem 5 (10 points). Suppose that the running time of a randomized algorithm is modeled by the random variable X. Suppose that you know the expected running time $\mathrm{E}[X]$. You know that your algorithm has a worst case running time that exceeds $\mathrm{E}[X]$ by a significant margin. Therefore, you decide to stop the execution whenever it exceeds $(1+\epsilon) \mathrm{E}[X]$ steps, and restart the algorithm. You will repeat the execution of the algorithm at most t times. Denote by X_{k} the random variable modeling running time of the k-th try. Determine the probability that the randomized algorithm equals or exceeds $(1+\epsilon) \mathrm{E}[X]$ steps in all t repetitions. This probability models the failure probability of this algorithm.

Solution.

Problem 6 (20 points). How should we choose the number of repetitions t such that the randomized algorithm has with probability $1-1 / n$ at least one run such that $X<(1+\epsilon) \mathrm{E}[X]$ among the t runs.

Solution.

Problem 7 (20 points). How many people need to be in a room such that two of those people share a birthday with probability of 97%. We assume that birthdays are uniformly distributed. You need to derive your result.

Solution.

Checklist:

\square Did you add your name?Did you disclose all resources that you have used?
(This includes all people, books, websites, etc. that you have consulted)Did you sign that you followed the Aggie honor code?Did you solve all problems?Did you submit the pdf file of your homework?Did you submit a hardcopy of the pdf file in class?

