Sudoku as a Satisfiability-Problem

Andreas Klappenecker

Sudoku Constraints

Sudoku is an $n^2 \times n^2$ array with some fields containing entries with numbers in the range [1..n²]. The goal is to find numbers from [1..n²] for each of the empty fields such that

- each column contains all numbers from 1 to n^2

- each row contains all numbers from 1 to n^2

- each of the n^2 blocks contains all numbers from 1 to n^2

The goal is to decide whether this can be done or not.

Reduce Sudoku to SAT

Goal: Translate a Sudoku problem into a propositional formula that is satisfiable if and only if the Sudoku has a solution.

Formalizing the Constraints

We define a predicate valid that is true if and only if the n^2 array entries specified in its arguments contain all numbers in $R=[1..n^2]$. Suppose that x_1 , x_2 , ..., x_n^2 are entries of the array. Then valid($x_1, x_2, ..., x_n^2$) = $\forall d \in R \exists i \in R (x_i = d)$

Sudoku Constraints Predicate

 $N = n^2$, $B = \{1, n+1, 2n+1, ..., n^2 - (n-1)\}$ beginning of blocks sudoku((x_{ij})_{i,j $\in R$}) = \forall (i in R) valid(x_{i1}, ..., x_{iN}) $\land \forall$ (j in R) valid(x_{1j}, ..., x_{Nj}) \land \forall (i,j in B) valid(x_{ij} , $x_{i(j+1)}$, ..., $x_{i(j+n-1)}$,

X(i+1)j, X(i+1)(j+1), ..., X(i+1)(j+n-1), ...,

X(i+n-1)j, X(i+n-1)(j+1), ..., X(i+n-1)(j+n-1)

Rows Columns Blocks

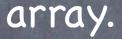
Variations

The previous approach can be used as an input to a theorem prover such as Isabelle/HOL.

There are variations that express everything over a boolean domain. This leads to many more clauses, but apparently this can be efficient.

Encoding Sudoku

Choose n² boolean variables for each entry of the array. We denote by p_{ijd} the truth value of $x_{ij} = d$. Cell (i,j) takes a value in R: \exists (d in R) p_{ijd} Cell (i,j) takes at most one value: $\forall d \forall d' (1 \le d \le d' \le n^2) \rightarrow \neg (p(i,j,d) \land p(i,j,d'))$ [This translates into $C(n^2, 2)$ clauses for the SAT solver]



Further Reading

The approach outlined here followed T. Weber, A SAT-based Sudoku Solver. There are ways to optimize the CNF boolean solvers.

