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Sudoku Constraints

Sudoku is an n2 x n2 array with some fields containing entries with 
numbers in the range [1..n2]. The goal is to find numbers from [1..n2] 
for each of the empty fields such that 


- each column contains all numbers from 1 to n2


- each row contains all numbers from 1 to n2


- each of the n2 blocks contains all numbers from 1 to n2


The goal is to decide whether this can be done or not. 



Reduce Sudoku to SAT

Goal: Translate a Sudoku problem into a propositional formula 
that is satisfiable if and only if the Sudoku has a solution.



Formalizing the Constraints

We define a predicate valid that is true if and only if the n2 array 
entries specified in its arguments contain all numbers in R=[1..n2]. 


Suppose that x1, x2, …, xn2 are entries of the array. Then 


 valid( x1, x2, …, xn2) = ∀ d∈R ∃ i∈R (xi = d)



Sudoku Constraints Predicate

N = n2, B = {1, n+1, 2n+1, …, n2 - (n-1) } beginning of blocks


sudoku( ( xij )i,j ∈ R ) = 


 ∀ (i in R) valid(xi1, … , xiN)  ⋀  ∀ (j in R) valid(x1j, … , xNj) ⋀


 ∀ (i,j in B) valid( xij, xi(j+1), …,xi(j+n-1),  


                       x(i+1)j, x(i+1)(j+1), …,x(i+1)(j+n-1), … , 


        x(i+n-1)j, x(i+n-1)(j+1), …,x(i+n-1)(j+n-1))
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Variations

The previous approach can be used as an input to a theorem prover 
such as Isabelle/HOL. 


There are variations that express everything over a boolean 
domain. This leads to many more clauses, but apparently this can 
be efficient. 



Encoding Sudoku

Choose n2 boolean variables for each entry of the array. 


We denote by pijd the truth value of xij = d. 


Cell (i,j) takes a value in R:     ∃ (d in R) pijd


Cell (i,j) takes at most one value: 


∀ d ∀ d’ ( 1 <= d < d’ <= n2) -> ¬( p(i,j,d) ⋀ p(i,j,d’) )


[This translates into C(n2,2) clauses for the SAT solver] 



Further Reading

The approach outlined here followed


T. Weber, A SAT-based Sudoku Solver. 


There are ways to optimize the CNF boolean solvers. 


