Sudoku as a Satisfiability-Problem

Andreas Klappenecker

Sudoku Constraints

Sudoku is an n® x n® array with some fields containing entries with
numbers in the range [1..n%]. The goal is to find numbers from [1..n¢]
for each of the empty fields such that

- each column contains all numbers from 1 to n?
- each row contains all numbers from 1 to n?
- each of the n? blocks contains all numbers from 1 to n?

The goal is to decide whether this can be done or not.

Reduce Sudoku to SAT

Goal: Translate a Sudoku problem into a propositional formula
that is satisfiable if and only if the Sudoku has a solution.

Formalizing the Constraints

We define a predicate valid that is true if and only if the n® array
entries specified in its arguments contain all numbers in R=[1..n].

Suppose that xi, Xz, ..., Xa® are entries of the array. Then

valid(X1, X2, ..., Xn%) = V deR 3 ieR (xi = d)

Sudoku Constraints Predicate

N = n? B = {1, n+l, 2n+l, ..., n® - (n-1) } beginning of blocks
sudoku((Xij)ijer) =
v (i in R) valid(xi1, ... , xin) A V¥ (j in R) valid(xyj, ... , Xnj) A
v (i,j in B) valid(Xij, Xi(js1), «sXi(jen-1),
X(i+1)js XK@i+1)(j+1)s oo s X(i41)(j#n-1)s oo0

X(i+n-1)j, X(i+n-1)(j+1), ---,x(i+n-1)(j+n-1))

Variations

The previous approach can be used as an input to a theorem prover
such as Isabelle/HOL.

There are variations that express everything over a boolean

domain. This leads to many more clauses, but apparently this can
be efficient.

Encoding Sudoku

Choose n® boolean variables for each entry of the array.
We denote by pij« the truth value of xj; = d.

Cell (i,j) takes a value in R: 3 (d in R) pijd

Cell (i,j) takes at most one value:

vdvd (l<=d<d <=n? -> -(plijd) A p(jd))

[This translates into C(n?%,2) clauses for the SAT solver]

Further Reading

The approach outlined here followed
T. Weber, A SAT-based Sudoku Solver.

There are ways to optimize the CNF boolean solvers.

