
Sudoku as a Satisfiability-Problem
Andreas Klappenecker

Sudoku Constraints

Sudoku is an n2 x n2 array with some fields containing entries with
numbers in the range [1..n2]. The goal is to find numbers from [1..n2]
for each of the empty fields such that

- each column contains all numbers from 1 to n2

- each row contains all numbers from 1 to n2

- each of the n2 blocks contains all numbers from 1 to n2

The goal is to decide whether this can be done or not.

Reduce Sudoku to SAT

Goal: Translate a Sudoku problem into a propositional formula
that is satisfiable if and only if the Sudoku has a solution.

Formalizing the Constraints

We define a predicate valid that is true if and only if the n2 array
entries specified in its arguments contain all numbers in R=[1..n2].

Suppose that x1, x2, …, xn2 are entries of the array. Then

 valid(x1, x2, …, xn2) = ∀ d∈R ∃ i∈R (xi = d)

Sudoku Constraints Predicate

N = n2, B = {1, n+1, 2n+1, …, n2 - (n-1) } beginning of blocks

sudoku((xij)i,j ∈ R) =

 ∀ (i in R) valid(xi1, … , xiN) ⋀ ∀ (j in R) valid(x1j, … , xNj) ⋀

 ∀ (i,j in B) valid(xij, xi(j+1), …,xi(j+n-1),

 x(i+1)j, x(i+1)(j+1), …,x(i+1)(j+n-1), … ,

 x(i+n-1)j, x(i+n-1)(j+1), …,x(i+n-1)(j+n-1))
Rows

Columns

Blocks

Variations

The previous approach can be used as an input to a theorem prover
such as Isabelle/HOL.

There are variations that express everything over a boolean
domain. This leads to many more clauses, but apparently this can
be efficient.

Encoding Sudoku

Choose n2 boolean variables for each entry of the array.

We denote by pijd the truth value of xij = d.

Cell (i,j) takes a value in R: ∃ (d in R) pijd

Cell (i,j) takes at most one value:

∀ d ∀ d’ (1 <= d < d’ <= n2) -> ¬(p(i,j,d) ⋀ p(i,j,d’))

[This translates into C(n2,2) clauses for the SAT solver]

Further Reading

The approach outlined here followed

T. Weber, A SAT-based Sudoku Solver.

There are ways to optimize the CNF boolean solvers.

