Sudoku as a Satisfiability-Problem

Andreas Klappenecker

Sudoku Constraints

Sudoku is an $n^{2} \times n^{2}$ array with some fields containing entries with numbers in the range [1..n²]. The goal is to find numbers from [1..n²] for each of the empty fields such that

- each column contains all numbers from 1 to n^{2}
- each row contains all numbers from 1 to n^{2}
- each of the n^{2} blocks contains all numbers from 1 to n^{2}

The goal is to decide whether this can be done or not.

Reduce Sudoku to SAT

Goal: Translate a Sudoku problem into a propositional formula that is satisfiable if and only if the Sudoku has a solution.

Formalizing the Constraints

We define a predicate valid that is true if and only if the n^{2} array entries specified in its arguments contain all numbers in $\mathrm{R}=\left[1 . . \mathrm{n}^{2}\right]$.

Suppose that $x_{1}, x_{2}, \ldots, x_{n}{ }^{2}$ are entries of the array. Then

$$
\operatorname{valid}\left(x_{1}, x_{2}, \ldots, x_{n}{ }^{2}\right)=\forall d \in R \exists i \in R\left(x_{i}=d\right)
$$

Sudoku Constraints Predicate

$$
\begin{aligned}
& N=n^{2}, B=\left\{1, n+1,2 n+1, \ldots, n^{2}-(n-1)\right\} \text { beginning of blocks } \\
& \operatorname{sudoku}\left(\left(x_{i j}\right)_{i, j} \in R\right)= \\
& \forall(i \text { in } R) \operatorname{valid}\left(x_{i 1}, \ldots, x_{i N}\right) \wedge \forall(j \text { in } R) \operatorname{valid}\left(x_{1 j}, \ldots, x_{N_{j}}\right) \wedge \\
& \forall(i, j \text { in } B) \operatorname{valid}\left(x_{i j}, x_{i(j+1)}, \ldots, x_{i(j+n-1),}\right. \\
& x_{(i+1) j,} x_{\left.(i+1)(j+1), \ldots, x_{(i+1)}\right)(j+n-1), \ldots,} \\
& x_{(i+n-1) j,}, x_{\left.(i+n-1)(j+1), \ldots, X_{(i+n-1)}(j+n-1)\right)}
\end{aligned}
$$

Variations

The previous approach can be used as an input to a theorem prover such as Isabelle/HOL.

There are variations that express everything over a boolean domain. This leads to many more clauses, but apparently this can be efficient.

Encoding Sudoku

Choose n^{2} boolean variables for each entry of the array.
We denote by $p_{i j d}$ the truth value of $x_{i j}=d$.
Cell (i, j) takes a value in $R: \quad \exists(d$ in $R) p_{i j d}$
Cell (i, j) takes at most one value:
$\forall d \forall d^{\prime}\left(1<=d<d^{\prime}<=n^{2}\right) \rightarrow \neg\left(p(i, j, d) \wedge p\left(i, j, d^{\prime}\right)\right)$
[This translates into $C\left(n^{2}, 2\right)$ clauses for the SAT solver]

Further Reading

The approach outlined here followed
T. Weber, A SAT-based Sudoku Solver.

There are ways to optimize the CNF boolean solvers.

