Undecidable Problems

Andreas Klappenecker

Post's Correspondence Problem

Given: A finite alphabet A, a finite set of pairs (x, y) of strings over the alphabet A.

Goal: Find a string over the alphabet A that can be composed in two different ways:

- by concatenating strings $x_{1} x_{2} \ldots x_{n}$ from the first components
- by concatenating strings $y_{1} y_{2} \ldots y_{n}$ from the second components
of a sequence $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ of the given pairs.

PCP Example 1

Given: Alphabet $A=\{a, b\}, P=\{(b a b, a),(a b, a b b),(a, b a)\}$
Solution: abbaba
$x_{2} x_{1} x_{3}=a b| | b a b| | a$
$y_{2} y_{1} y_{3}=a b b| | a| | b a$
Important: You need to select a sequence of pairs from P
Projecting on first components must be the same as projecting on the second components. Reordering is not allowed.

PCP Exercise

Given: Set of pairs $P=\{(1,111),(1011,10),(10,0)\}$ over $A=\{0,1\}$
Find a solution to Post's correspondence problem.

Solution

Given: Set of pairs $P=\{(1,111),(1011,10),(10,0)\}$ over $A=\{0,1\}$
Find a solution to Post's correspondence problem.
Solution: $(2,1,1,3)$
$x_{2} x_{1} x_{1} x_{3}=10111| | 1| | 1| | 10=10111110$
$y_{2} y_{1} y_{1} y_{3}=10| | 111|111| \mid 0=10111110$

PCP Example

The Post's correspondence problem with
$P=\{(001,0),(01,011),(01,101),(10,001)\}$ over $A=\{0,1\}$
has a solution, but the smallest requires $n=66$ words!

Main Result

Theorem: The Post's correspondence problem is undecidable when the alphabet has at least two elements.

Idea of the proof: Reduce the halting problem onto the Post's correspondence problem. This is often done via an intermediate step, where a RAM machine with a single register is used.

Context Free Grammars

Problem: Is a given context-free grammar G unambiguous?
[A context-free grammar G is unambiguous iff every string s in $L(G)$ has a unique left-most derivation. The reference grammars given for many programming languages are often ambiguous (e.g. dangling else problem). Sometimes formal languages have ambiguous and unambiguous grammars.]

This problem is undecidable. One can reduce the PCP problem to this one.

Example

The regular language $\{\epsilon, a, a a, a a a, a a a a, a a a a, \ldots\}$
Ambiguous grammar: $A \rightarrow a A|A a| \epsilon$
Unambiguous grammar: $A \rightarrow a A \mid \epsilon$

Example 2

The context free grammar $A \rightarrow A+A|A-A| a$ is ambiguous, since $a+a+a$ has two different left-most derivations.
$A \rightarrow A+A \rightarrow a+A \rightarrow a+A+A \rightarrow a+a+A \rightarrow a+a+a$
and
$A \rightarrow A+A \rightarrow A+A+A \rightarrow \ldots \rightarrow a+a+a$
(replacing left-most nonterminal A by $A+A$)

Example 3 (Dangling Else)

```
Statement = if Condition then Statement |
    if Condition then Statement else Statement
    | ...
The following statement can be parsed in two different ways:
    if a then if b then s else s2
We can parse it as
    if a then (if b then s) else s2
or as
    if a then (if b then s else s2)
```

This is an example of an ambiguous language.

Chomsky Hierarchy

The classification of formal grammars by Noam Chomsky imposes restrictions on the production rules $u \rightarrow v$:
(0) no restrictions
(1) no shortening: $|u|<=|v|$
(2) context free: u is a nonterminal symbol, $v \neq \epsilon$
(3) (right) regular: u is a nonterminal symbol, v is a single terminal symbol, or a nonterminal symbol followed by a terminal symbol, start symbol can produce the empty string.

Recursive Languages

A formal language is called recursive if and only if there exists a Turing machine such that on input of a finite input string

- halts and accept if the string is in the language,
- and halts and rejects otherwise.

Recursive languages correspond to decidable problems.

Examples and Counterexamples

Every context-sensitive grammar is recursive.
There exist recursive languages that are not context-sensitive.
The language corresponding to the Halting problem is not recursive.

Recursive Enumerable

The languages that are accepted by a Turing machine are called recursively enumerable languages.

The type-0 formal languages are precisely the recursively enumerable languages.

