Sudoku Programming Challenge

Andreas Klappenecker

Goal

The goal is To solve Sudoku using SAT solvers.
Study the impact of clause generation.

Try several different SAT solvers, explain how they work, and find
out which one works best.

How it Iis done

@ Form a team of up to 4 people

o Distribute roles (CNF generation, SAT solver integration,
documentation, data collection and strategy optimization, etc.)

@ Organize meetings

@ Everything should be ready by Monday, Dec. 7

Deliverables

@ Documentation that explains in detail the generation of clauses
from a given Sudoku puzzle, the strategy of the SAT solvers (in

detail - this is an algorithms class). Data that explains why some
combinations are better than others.

@ Program that implements these variations

@ Solutions to the challenge problems that will be posted

Why do 117

@ Participation score (minimal: documentation of approach including
the description of the algorithms of several SAT solvers).

@ Extra credit for fully working Sudoku solver (up to 4 points of
the total 100 points of the entire course for each team mate).

Knuths Solvers

Knuth has implemented the solvers described in his Chapter 7.2.2.2.

They are written in CWEB, a mix of C and TeX, in the literate
programming style.

CWEAVE satO.w vields the documentation satO.tex (tex satO.tex)

CTANGLE satO.w vyields the C source code satO.c (use gcc)

You need to install the Stanford Graph Base if you want to compile
it.

Backtracking

F(Qﬁl,xg,a?g) = (331 V .CI_ZQ) A\ (2132 V 333) AN (51_31 V 51_33) A\ (53‘1 VoV 333) (1)

For example, consider again the formula F'in (1). If we set 1 = 0, F' reduces
to T2 A (22 Vx3), because the first clause (x1 V Z2) loses its x1, while the last two
clauses contain 1 and are satisfied. It will be convenient to have a notation for

this reduced problem; so let’s write
F|Z1 = Za A (z2Vx3). (54)
Similarly, if we set x1 = 1, we obtain the reduced problem
Flx; = (xzaVa3) ATz A (T2 V x3). (55)
F' is satisfiable if and only if we can satisfy either (54) or (55).

Algorithm A (Satisfiability by backtracking). Given nonempty clauses C; A---A
Cr on n > 0 Boolean variables x; ...x,, represented as above, this algorithm
finds a solution if and only if the clauses are satisfiable. It records its current
progress in an array m; ... m, of “moves,” whose significance is explained below.

Al.

A2,

A3.

A4.

AS5.
AG6.

AT.

AS.

[Initialize.] Set a < m and d < 1. (Here a represents the number of active
clauses, and d represents the depth-plus-one in an implicit search tree.)

[Choose.] Set I «+ 2d. If C(I) < C(+1),set !l < [+ 1. Then set my +
(1& 1) +4[C(® 1) =0]. (See below.) Terminate successfully if C(l) = a.

[Remove [.] Delete [from all active clauses; but go to A5 if that would make
a clause empty. (We want to ignore [, because we’re making [true.)

[Deactivate I’s clauses.] Suppress all clauses that contain [. (Those clauses
are now satisfied.) Then set a < a — C(l), d + d + 1, and return to A2.

[Try again.] If mg < 2, set mg < 3 —myg, [< 2d+ (mg & 1), and go to A3.

[Backtrack.] Terminate unsuccessfully if d = 1 (the clauses are unsatisfi-
able). Otherwise set d < d—1and [+ 2d+ (mgq & 1).

[Reactivate I’s clauses.] Set a < a + C(l), and unsuppress all clauses that
contain /. (Those clauses are now unsatisfied, because [is no longer true.)

[Unremove [.] Reinstate [in all the active clauses that contain it. Then go
back to A5. |

