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Chapter 2

Probability Theory

We collect in this chapter some basic notions and methods from probability
theory. Our aim is to give a brief exposition of results that are repeatedly used
in the analysis of randomized algorithms. The treatment is not exhaustive and
cannot replace any standard text on probability theory. Typically, we will
skip all proofs and merely remind the reader of basic definitions and useful
theorems.

§1 Basic Definitions

If a coin is tossed, then there are two possible outcomes: heads and tails.
Statements such as ‘the chance that the outcome will be heads is 50%’ are
formalized in probability theory, giving a better way to reason about the odds
of a certain outcome of an experiment.

The possible outcomes of an experiment are called the sample space. For
example, the sample space of the coin tossing experiment is Ω = {head, tail}.
Certain subsets of the sample space are called events, and the probability of
these events is determined by a probability measure.

For instance, if we roll a dice, then one of its six face values is the outcome
of the experiment, so the sample space is Ω = {1, 2, 3, 4, 5, 6}. An event is a
subset of the sample space Ω. The event {1, 2} occurs when the dice shows a
face value less than three. The probability measures describes the odds that a
certain event occurs, for instance Pr[{1, 2}] = 1/3 means that the event {1, 2}
will occur with probability 1/3.

A probability measure is not necessarily defined on all subsets of the sample
space Ω, but just on all subsets of Ω that are considered events. Nevertheless,
we want to have a uniform way to reason about the probability of events. This
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2 CHAPTER 2. PROBABILITY THEORY

is accomplished by requiring that the collection of events form a σ-algebra.
A σ-algebra F is a collection of subsets of the sample space Ω such that the
following requirements are satisfied:

S1 The empty set is contained in F .

S2 If a set E is contained in F , then its complement Ec is contained in F .

S3 The countable union of sets in F is contained in F .

Henceforth we will assume that the collection of events forms a σ-algebra.
This allows to talk about the complementary event, and the union of events.
The empty set is often called the impossible event. The sample space Ω is the
complement of the empty set, hence is contained in F . The event Ω is called
the certain event.

Let F be a σ-algebra over the sample space Ω. A probability measure on
F is a function Pr: F → [0, 1] satisfying

P1 The certain event satisfies Pr[Ω] = 1.

P2 If the events E1, E2, . . . in F are mutually disjoint, then

Pr[
∞⋃

k=1

Ek] =
∞∑

k=1

Pr[Ek].

These axioms have a number of familiar consequences. For example, it follows
that the complementary event Ec has probability Pr[Ec] = 1 − Pr[E]. In
particular, the impossible event has probability zero, Pr[∅] = 0, as it should.
Another consequence is a simple form of the inclusion-exclusion principle:

Pr[E ∪ F ] = Pr[E] + Pr[F ]− Pr[E ∩ F ],

which is convenient when calculating probabilities.

Example 1 A dice has sample space Ω = {1, 2, 3, 4, 5, 6}. The four events
impossible = ∅,head = {1, 2}, tail = {3, 4, 5, 6}, certain = {1, 2, 3, 4, 5, 6}
form a σ-algebra F . The event head occurs when the face value of the dice is
less than three, and tail occurs otherwise. A probability measure is given by

Pr[impossible] = 0, Pr[head] = 1/3, Pr[tail] = 2/3, Pr[certain] = 1.

The events head and tail partition the sample space Ω. These events can be
used to simulate a biased coin. Apart from the four subsets of Ω above, none
of the other 26 − 4 = 60 subsets of Ω is needed for this purpose.
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A probability space is a triple (Ω,F , Pr) such that Ω is a sample space, F
is a σ-algebra of events over Ω, and Pr is a probability measure on F . We use
this terminology to avoid lengthy descriptions.

Remark. The reader might wonder why not all subsets of the sample space
are necessarily considered events. Indeed, if Ω is a countable set, then this
is a viable option. However, if the sample space Ω is uncountable, such as
Ω = [0, 1], then having all subsets of the interval as events makes it difficult
to define a reasonable probability measure. The reason is that axiom P2
imposes severe restrictions when the σ-algebra is big. Such measure-theoretic
difficulties have been noticed by Borel, Ulam and others.

Exercise 2.1 Let F be a σ-algebra. Show that the countable intersection of
events in F is contained in F .

Exercise 2.2 Let E and F be events contained in a σ-algebra F . Show that
the set-difference E − F is contained in F .

Exercise 2.3 Let E and F be events such that E ⊆ F . Show that

Pr[E] ≤ Pr[F ].

Exercise 2.4 Let E1, . . . , En be events that are not necesarily disjoint. Show
that

Pr[E1 ∪ · · · ∪En] ≤ Pr[E1] + · · ·+ Pr[En].

Exercise 2.5 Let E1, E2, . . . , En be arbitrary events over a sample space Ω.
Show that

Pr[
n⋃

k=1

Ek] =
n∑

s=1

(−1)s+1
∑

k1<k2<···<ks

Pr[
s⋂

r=1

Ekr ]

holds. This is the so-called inclusion-exclusion principle. Hint: Consider first
some small cases, such as n = 2 and n = 3, to get familiar with this formula.

Conditional Probabilities. Let E and F be events over a sample space
Ω such that Pr[F ] > 0. The conditional probability Pr[E |F ] of the event E
given F is defined by

Pr[E |F ] =
Pr[E ∩ F ]

Pr[F ]
.

The value Pr[E |F ] is interpreted as the probability that the event E occurs,
assuming that the event F occurs. By definition, Pr[E ∩F ] = Pr[E |F ] Pr[F ],
and this simple multiplication formula often turns out to be useful.
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Exercise 2.6 Suppose that F1, . . . , Fn are events that partition the sample
space Ω such that Pr[Fk] > 0 holds for all k in the range 1 ≤ k ≤ n. Show
that

Pr[E ] =
n∑

k=1

Pr[E |Fk ] Pr[Fk ]

holds for any event E. This fact is attributed to Reverend Thomas Bayes.

Keeping the assumptions of the previous exercise, and assuming that
Pr[E] > 0, we obtain as a consequence the so-called Bayes’ rule

Pr[F` |E] =
Pr[F` ∩ E]

Pr[E]
=

Pr[E|F`] Pr[F`]∑n
k=1 Pr[E|Fk] Pr[Fk]

,

which allows to compute the conditional probability Pr[F` |E] when the prob-
abilities Pr[E], Pr[Fk], and Pr[E |Fk] are known.

Example 2 We illustrate the virtue of conditional probabilities with the help
of the notorious car and goats problem which got famous through the Monty
Hall game show. At the end of this show, a contestant was shown three closed
doors. She was told that behind one door is a new car, and behind the other
two are goats. If the contestant chooses the door hiding the car, then she can
keep the car, otherwise she has to marry the lucky goat.1 Once she has made
her choice, the game show host – knowing which door conceals the car – opens
one of the other two doors to reveal a goat. Monty then asks her whether she
would like to switch doors. Assuming that the contestant does not want to
get married to a goat, the question is: Should she switch?

Without loss of generality, let us assume that the contestant has chosen
door 1, Monty has opened door 2, and now the contestant has to choose
between doors 1 and 3. Let C1 denote the event that the car is behind door 1,
C3 the event that the car is behind door 3, and M2 the event that Monty
opened door 2, hence contains a goat.

It is apparent that Pr[C1] = 1/3 and Pr[C3] = 1/3. Assuming that
Monty will choose a door at random if both doors conceal goats, we get
Pr[M2 |C1 ] = 1/2. We certainly have Pr[M2 |C3 ] = 1, because Monty has
no choice in this case. Recall that our goal is to compare the conditional
probabilities Pr[C1|M2] and Pr[C3|M2]. We can use Bayes’ rule to determine
these probabilities. Indeed,

Pr[C1|M2] =
Pr[M2|C1] Pr[C1]

Pr[M2|C1] Pr[C1] + Pr[M2|C3] Pr[C3]
=

1/6
1/6 + 1/3

= 1/3.

1Incidentally, Monty Hall was awarded the prestigious Order of Canada by the Canadian
goverment for his humanitarian efforts. . .
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Simiarly, Pr[C3|M2] = 2/3. In conclusion, if she sticks with her decision, then
the probability to get the car is 1/3. If she switches, then the probability is
2/3. This means that it is advisable that she switches.

Remark. There are many web sites dedicated to this problem, and one finds
heated discussions about the Monty Hall problem on the internet.2 You will
notice that there exist different solutions, depending on the exact assumptions
about Monty’s knowledge and his strategy.

§2 Random Variables

We discuss in this section the concept of a random variable. Random vari-
ables are functions that associate a numerical value to each outcome of an
experiment. For instance, if we roll a pair of dice, then the sum of the two
face values is a random variable. Similarly, if we toss a coin three times, then
the observed number of heads is a random variable.

Let F be a σ-algebra over the sample space Ω. A random variable X is a
function X : Ω → R such that the set {z ∈ Ω |X(z) ≤ x} is an event contained
in F for all x ∈ R. For brevity, we will say that X is defined on the σ-algebra
(Ω,F). It should be clear from this definition that there is nothing random
about a random variable, it is simply a function.

The definition ensures that a random variable can be used to specify events
in a convenient way. There are a number of notational conventions which
help to express events in an even more compact way. For instance, the event
{z ∈ Ω |X(z) ≤ x} is denoted shortly by X ≤ x, an idiosyncratic but standard
notation.

Example 3 If X is the random variable denoting the sum of the face values
of a pair of dice, then X ≤ 3 denotes the event {(1, 1), (1, 2), (2, 1)}.

Example 4 If Y is the random variable counting the number of heads in three
subsequent coin tosses, then Y ≤ 0 is the event {(tail,tail,tail)}, and Y ≤ 1 is
the event {(tail,tail,tail), (head,tail,tail), (tail,head,tail), (tail,tail,head)}.

A discrete random variable is a random variable with countable range,
which means that the set {X(z) | z ∈ Ω} is countable.

2The discussions are not concerned about the fact whether or not the contestant had to
marry the goat, because this does not influence the probabilities. So stay focused!
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We will henceforth assume that all random variables are discrete
unless otherwise specified.

The convenience of a discrete random variable X is that one can define
events in terms of values of X, for instance in the form X ∈ A which is short
for {z ∈ Ω |X(z) ∈ A}. If the set A is a singleton, A = {x}, then we write
X = x. The next exercise shows that X = x and X ∈ A indeed specify events.

Exercise 2.7 Let X be a discrete random variable defined on the σ-algebra
(Ω,F). Show that X = x is an event of F . Hint: Prove that y < X ≤ x is
an event for all real numbers y and x, and deduce the claim.

Densities and Distributions. Let X be a discrete random variable defined
on a σ-algebra (Ω,F). Let Pr be a probability measure on F . The density
function pX of a discrete random variable X is defined by

pX(x) = Pr[X = x].

Thus, the density function describes the probabilities of the events X = x.
Note that the density function is sometimes called probability mass function.

The function FX(x) = Pr[X ≤ x] is called the distribution function of
the random variable X. Note that the distribution function can be defined in
the same way for arbitrary random variables; this is not true for the density
function.

Exercise 2.8 Show that the distribution function FX(x) of a random variable
is a non-decreasing function, i.e., that x ≤ y implies FX(x) ≤ FX(y).

Example 5 Let (Ω, 2Ω,Pr) be the probability space of a pair of fair dice,
that is, the sample space Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, and Pr is the
uniform probability measure, Pr[A] = |A|/36 for any subset A of Ω. Let X
denote the random variable denoting the sum of the face values of the two
dice. The density function and the distribution function of X are tabulated
below:

x 2 3 4 5 6 7 8 9 10 11 12

Pr[X = x] 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Pr[X ≤ x] 1
36

3
36

6
36

10
36

15
36

21
36

26
36

30
36

33
36

35
36

36
36
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Independence. Let (Ω,F , Pr) be a probability space. Two events E and
F are called independent if and only if Pr[E ∩ F ] = Pr[E] Pr[F ]. This means
that the knowledge that F has occured does not influence the probability
that E occurs, because the condition Pr[E ∩F ] = Pr[E] Pr[F ] is equivalent to
Pr[E |F ] = Pr[E]. We can define the independence of random variables in a
similar way.

Let (X1, X2, . . . , Xn) be a sequence of discrete random variables defined
on the probability space (Ω,F , Pr). We say that the random variables Xk,
1 ≤ k ≤ n, are mutually independent if and only if

Pr[{z |Xk(z) = xk, 1 ≤ k ≤ n}] =
n∏

k=1

Pr[{z |Xk(z) = xk}] (2.1)

holds for all (x1, . . . , xn) ∈ Rn. Note that condition (2.1) is usually expressed
in the idiosyncratic form

Pr[X1 = x1, X2 = x2, · · · , Xn = xn] =
n∏

k=1

Pr[Xk = xk]

Expectation Values. Let X be a discrete random variable over the prob-
ability space (Ω,F , Pr). The expectation value of X is defined to be

E[X] =
∑

α∈X(Ω)

α Pr[X = α],

when this sum is unconditionally convergent in R, the extended real numbers.
The expectation value is also called the mean of X. If X is a random variable
with nonnegative integer values, then the expectation can be calculated by

E[X] =
∞∑

x=1

Pr[X ≥ x],

which is often convenient. If X and Y are two arbitrary discrete random
variables, then

E[aX + bY ] = aE[X] + bE[Y ],

that is, the expectation operator is linear. This is an extremely useful result.
If X and Y are independent discrete random variables, then

E[XY ] = E[X] E[Y ].

Caveat: If X and Y are not independent, then this is in general false.
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Example 6 Suppose that n persons give their hats to the hat check girl. She
is upset because her goat has just passed away, and is handing the hats back
at random. We want to answer the following question: On average, how many
persons get their own hat back?

We take Ω = {1, . . . , n} as sample space, and allow all subsets of Ω as
events, F = 2Ω. The event mk = {k} means that the kth person received his
own hat. Let Xk : Ω → R be the random variable defined by Xk(k) = 1 and
Xk(x) = 0 for all x 6= k; hence Xk = 1 denotes the event mk, and Xk = 0 the
event Ω−mk. The probability that the kth person receives her own hat back
is 1/n, since she will receive one of n possible hats. Consequently, we define
the probability measure by Pr[mk] = 1/n. Let X = X1 + · · ·+ Xn denote the
number of persons receiving their own hats. We have

E[X] =
n∑

k=1

E[Xk] =
n∑

k=1

1 · Pr[Xk] = n(1/n) = 1,

by linearity of expectation, and by definition of the expectation value. This
means that on average one person gets his own hat back. This neat illustration
of the linearity of expectation is adapted from Spencer [9], but presumably
this result was known since the invention of the hat.

The expectation can be used to bound probabilities, as the following sim-
ple, but fundamental, result shows:

Theorem 7 (Markov’s Inequality) If X is a random variable and t a pos-
itive real number, then

Pr[|X| ≥ t] ≤ E[|X| ]
t

.

Proof. Let Y denote the random variable

Y (ω) =
{

0 if |X(ω)| < t,
1 if |X(ω)| ≥ t,

hence Y = 1 denotes the event |X| ≥ t. The expectation value of |X| satisfies

E[|X| ] ≥ E[tY ] = t E[Y ] = t Pr[|X| ≥ t],

which proves the claim.

Exercise 2.9 Let X be a discrete random variable and let h : R → R be a
nonnegative function. Show that for all positive real numbers t, we have

Pr[h(X) ≥ t] ≤ E[h(X)]
t

.
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Variance. The variance Var[X] of a discrete random variable X is defined
by

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2,

whenever this expression is well-defined. The variance measures the squared
deviation from the expected value E[X].

It is easy to see that variance is not a linear operator, since

Var[X + X] = 4Var[X]

holds, to mention just one example. Moreover, Var[aX + b] = a2Var[X] for
all a, b ∈ R. If X and Y are independent random variables, then the variance
satisfies

Var[X + Y ] = Var[X] + Var[Y ]. (2.2)

The random variable X will rarely deviate from the expectation value if the
variance is small. This is a consequence of the Chebychev’s useful inequality:

Theorem 8 (Chebychev’s inequality) If X is a random variable, then

Pr[(X − E[X])2 ≥ β] ≤ Var[X]
β

. (2.3)

Proof. We show how (2.3) can be derived to give an example of such calcula-
tions. By definition,

Var[X] = E[(X − E[X])2] =
∑

α∈(X(Ω)−E[X])2

α Pr[(X − E[X])2 = α]

Omitting all values of α less than β from this sum, we obtain

Var[X] ≥
∑

α∈(X(Ω)−E[X])2, α≥β

α Pr[(X − E[X])2 = α]

≥
∑

α∈(X(Ω)−E[X])2, α≥β

β Pr[(X − E[X])2 = α]

The last sum is equal to β Pr[(X − E[X])2 ≥ α]. Dividing by β on both sides
yields the Chebychev’s inequality.

The square root of the variance, σ =
√

Var[X], is called the standard
deviation of the random variable X.
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Exercise 2.10 Show that if X is a random variable with standard devia-
tion σ, then

Pr[ |X − E[X]| ≥ cσ] ≤ 1
c2

for any positive constant c ∈ R. This formula is often also called Chebychev’s
inequality. Can you explain why?

Bernoulli Distribution. Tossing a biased coin can be described by a ran-
dom variable X that takes the value 1 if the outcome of the experiment is
head, and the value 0 if the outcome is tail. Assume that Pr[X = 1] = p and
Pr[X = 0] = 1 − p for some real number p ∈ (0, 1). The random variable X
is said to have the Bernoulli distribution with parameter p. We can compute
the expectation value and the variance as follows:

E[X] = p, Var[X] = E[X2]− E[X]2 = p− p2 = p(1− p).

Binomial Distribution. Let X1, . . . , Xn denote independent identically
distributed random variables, all having a Bernoulli distribution with param-
eter p. Then the random variable X = X1 + · · ·+Xn describes the number of
heads in a sequence of n coin flips. The expectation of X can be immediately
computed by linearity of expectation, and, since the random variables Xk are
independent, we can compute the variance using (2.2):

E[X] = np, Var[X] = np(1− p).

The probability of the event X = x, for integers in the range 0 ≤ x ≤ n, is

Pr[X = x] =
(

n

x

)
px(1− p)n−x.

Indeed, choose x positions in a sequence of length n. The probability that
the sequence will show heads at exactly these positions is px(1 − p)n−x. The
result follows, since there are

(
n
x

)
ways to choose x positions in a sequence of

length n.

Uniform Distribution. Let X be a random variable that takes integral
values in {1, . . . , n}. Such a random variable is said to be uniformly distributed
if Pr[X = k] = 1/n for all integers k in the range 1 ≤ k ≤ n. The expectation
value and the variance of X are respectively given by

E[X] =
n + 1

2
, Var[X] =

n2 − 1
12

.
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The expectation value follows from the definition. We can verify the variance
by noting that

E[X2] =
n∑

k=1

1
n

k2 =
1
n

n(1 + n)(1 + 2n)
6

=
(1 + n)(1 + 2n)

6
,

hence Var[X] = E[X2]− E[X]2 =
(1 + n)(1 + 2n)

6
− (n + 1)2

4
= (n2 − 1)/12.

Geometric Distribution. Suppose we keep tossing a biased coin, which
has the Bernoulli distribution with parameter p, until the event head occurs.
Let the random variable X denote the number of coin flips needed in this
experiment. We say that X is geometrically distributed with parameter p.
The density function of X is given by

pX(x) = Pr[X = x] = p(1− p)x−1

for x = 1, 2, . . . , and pX(x) = 0 otherwise. The expectation value and the
variance of X are given by

E[X] =
1
p
, Var[X] =

1− p

p2
.

It is possible to derive these facts directly from the definitions. For the ex-
pectation value this can be done without too much effort, but for the variance
this is cumbersome. In the next section, we will introduce a tool that can
significantly simplify such calculations.

Exercise 2.11 Prove that a geometrically distributed random variable X
with parameter p has expectation value E[X] = 1/p using the definition of
E[X] and some calculus. If you are fearless, then you can also attempt to
derive the variance of X.

Negative Binomial Distribution. Let X1, . . . , Xn be independent ran-
dom variables, all having geometric distribution with parameter p. The ran-
dom variable X = X1 + · · · + Xn describes the number of coin flips that are
necessary until n heads occur, when heads has probability p. The random
variable X is said to have negative binomial distribution with parameters n
and p. Linearity of expectation and additivity of variance for independent
random variables shows that

E[X] =
n∑

k=1

E[Xk] =
n

p
, Var[X] =

n∑

k=1

Var[Xk] =
n(1− p)

p2
.
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The probability of the event X = k is

Pr[X = k] =
(

k − 1
n− 1

)
pn(1− p)k−n, k ≥ n.

Indeed, a sequence of k coin flips that contains exactly n heads at specified
positions has probability pn(1− p)k−n. By specification, the last position is a
head, hence there are

(
k−1
n−1

)
other positions that can be chosen for the heads.

Poisson Distribution. A random variable X with non-negative integer
values is said to be Poisson distributed with parameter λ > 0 if

Pr[X = k] =
λk

k!
e−λ, k = 0, 1, 2, . . . .

The Poisson distribution can be used to approximate the Binomial distribution
if n is large and p is small. Indeed, suppose that limn→∞ npn = λ, then

lim
n→∞

(
n

k

)
pk

n(1− pn)n−k = e−λ λk

k!
.

This formula is frequently used when the evaluation of the binomial distribu-
tion is not feasible.

Caveat: Note that this is an asymptotic result. Many wrong statements and
conclusions can be found in the literature, which are a result of ignoring the
hypothesis limn→∞ npn = λ.

Exercise 2.12 Suppose that you have a biased coin that produces heads with
probability p, 0 < p < 1, but unfortunately this probability is not known to
you. Von Neumann showed that it is possible to use such a biased coin to
construct a source for fair coin flips, i.e., Pr[head] = Pr[tail] = 1/2. Derive
a scheme such that the expected number of biased coin flips does not exceed
1/p(1− p). Hint: Consider consecutive pairs of biased coin flips.

§3 Generating Functions

The calculation of expectation value and variance of a random variable can
be challenging. Probability generating functions are sometimes a useful tool
for this purpose. We give a brief overview and discuss some examples. More
details can be found in Graham, Knuth, Pataschnik [2, Chapter 8].
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Let X be a random variable defined on a probability space with probability
measure Pr. Assume that X has non-negative integer values. The probability
generating function of X is defined by

GX(z) =
∞∑

k=0

Pr[X = k]zk.

This series converges for all z with |z| ≤ 1. You attempt to find a closed form
expression for this series that is easier to manipulate. The first and second
derivative of GX(z) will be needed to determine the expectation value and the
variance. Indeed, the expectation value can be expressed by

E[X] =
∞∑

k=1

k Pr[X = k] = G′
X(1), (2.4)

where G′
X(z) denotes the derivative of GX(z). Moreover, notice that E[X2] =

G′′
X(1) + G′

X(1), hence

Var[X] = E[X2]− E[X]2 = G′′
X(1) + G′

X(1)−G′
X(1)2. (2.5)

Therefore, the knowledge of the first and second derivative of GX(z) at z = 1
is sufficient to determine the expectation value and the variance.

Example 9 Let X be a random variable that has Bernoulli distribution with
parameter p. The probability generating function is given by

GX(z) = (1− p) + pz.

Hence G′
X(z) = p, and G′′(z) = 0. We obtain E[X] = G′

X(1) = p and

Var[X] = G′′
X(1) + G′

X(1)−G′
X(1)2 = 0 + p− p2 = p(1− p).

Example 10 The probability generating function of a geometrically distributed
random variable X is

G(z) =
∞∑

k=1

p(1− p)k−1zk = pz
∞∑

k=0

(1− p)kzk =
pz

1− (1− p)z
.

Some calculus shows that

G′(z) =
p

(1− (1− p)z)2
, G′′(z) =

2p(1− p)
(1− (1− p)z)3

.
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Therefore, the expectation value is E[X] = G′
X(1) = 1/p. The variance is

given by

Var[X] = G′′(1) + G′(1)−G′(1)2 =
2(1− p)

p2
+

1
p
− 1

p2
=

1− p

p2
.

If you have solved Exercise 2.11, then you will appreciate the convenience of
this approach.

Remark. If you have trouble manipulating such expressions by hand, relax,
computer algebra systems can help you with such tasks. For instance, evaluat-
ing a sum such as pz

∑∞
k=0(1−p)kzk can be done for example in Mathematica

by G[z_] = p*z*Sum[(1-p)^k*z^k,{k,0,Infinity}]. You can differentiate
the resulting expression with the command D[G[z],z].

Theorem 11 Let X1, . . . , Xn be independent random variables with proba-
bility generating functions GX1(z), . . . , GXn(z). The probability generating
function of X = X1 + · · ·+ Xn is given by the product

GX(z) =
n∏

k=1

GXk
(z).

Example 12 Recall that the Bernoulli distribution with parameter p has gen-
erating function (1−p)+pz. If X1, . . . , Xn are independent random variables
that are Bernoulli distributed with parameter p, then X = X1 + · · ·+ Xn is,
by definition, Bernoulli distributed with parameters n and p. The generating
function of X is

GX(z) = ((1− p) + pz)n =
n∑

k=0

(
n

k

)
pk(1− p)n−kzk,

which confirms the probability distribution that we have derived earlier.

Exercise 2.13 Calculate the expectation value and the variance of a random
variable X, which has a Binomial distribution with parameters n and p, using
the derivatives of the generating function GX(z). Can you confirm the earlier
derivations?

Theorem 13 Let X1, X2 . . . be a sequence of independent and identically
distributed non-negative integer-valued random variables with common gen-
erating function GX(z). Let Y be a non-negative integer-valued random vari-
able with generating function GY (z), which is independent of the random
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variables Xk, k ≥ 1. Then the random variable Z = X1 + · · · + XY has
generating function

GZ(z) = GY (GX(z)).

Example 14 The hat check girl has a new pet. After her goat had passed
away, she received from a well-known cable network company a chicken. For
unknown reasons, she decided to call the chicken Monty. Monty lays Y eggs,
where Y is Poisson distributed with parameter λ. Suppose that each egg
hatches with probability p, independently of all other eggs. Let Xk, k ≥ 0,
denote independent Bernoulli distributed random variables with parameter p.
The number of little chicks can be described by Z = X1 + · · ·+ XY . The hat
check girl wonders: How is Z is distributed?

The probability generating function of the random variable Y is

GY (z) =
∞∑

k=0

λk

k!
e−λzk = e−λ

∞∑

k=0

(λz)k

k!
= eλ(z−1).

And therefore GZ(z) = GY (GX(z)) = GY ((1− p) + pz) = eλp(z−1), and hence
Z is Poisson distributed with parameter λp. Incidentally, the hat check girl
was, again, handing out hats at random while solving this problem. . .

§4 Examples

We stressed in the previous section that random variables are used to specify
events. Let (Ω,F , Pr) be a probability space. An event A ∈ F can be specified
by its characteristic function XA : Ω → R,

XA(x) =
{

1 if x ∈ A,
0 otherwise.

The random variable XA is called the indicator random variable of the event A.
The expectation value of XA is given by

E[XA] = 1 · Pr[X = 1] + 0 · Pr[X = 0] = Pr[A],

that is, the expectation value of an indicator random variable coincides with
the probability of the defining event A. The variance is given by

Var[X] = E[X2
A]− E[XA]2 = E[XA]− E[XA]2 = Pr[A](1− Pr[A]).

A common trick is to decompose a given random variable X into a sum of
indicator random variables. This can simplify, for instance, the calculation of
the mean. The following examples illustrate this approach.
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Left-to-right minima in a permutation. Let Sn denote the set of all
possible permutations of the numbers N = {1, . . . , n}. The set Sn is known
as the symmetric group. An element of Sn can be written as (a1, a2, . . . , an),
which can be identified with the bijective map k 7→ ak. A number ak satis-
fying ak = min{a1, . . . , ak} is called a left-to-right minimum. This quantity
is crucial in the analysis of minimum search algorithms [5] and some sorting
algorithms [6]. Consider the random variable X : Sn → Z defined by

X(a1, . . . , an) =
∣∣{k ∈ {1, . . . , n} | ak = min{a1, . . . , ak}

}∣∣.

This random variable counts the left-to-right minima. Our goal is to determine
the expectation value E[X], assuming Pr[π] = 1/n! for all π ∈ Sn.

Let Xk, 1 ≤ k ≤ n, denote the indicator random variable of the event
ak = min{a1, . . . , ak}. The random variable X satisfies X =

∑n
k=1 Xk, hence

E[X] =
n∑

k=1

E[Xk] =
n∑

k=1

Pr[ak = min{a1, . . . , ak}].

It is not difficult to show that Pr[ak = min{a1, . . . , ak}] = 1/k. Therefore, the
mean of X is equal to the nth Harmonic number Hn,

E[X] =
n∑

k=1

1
k

= Hn.

Note that ln(n + 1) ≤ Hn ≤ (lnn) + 1.

Exercise 2.14 Prove that a random permutation (a1, . . . , an) has a left-to-
right minimum at position k with probability 1/k, assuming that Pr[π] = 1/n!
for all π ∈ Sn.

The Coupon Collector Problem. The hat check girl is a compulsive
coupon collector. Currently, she is collecting charming Harry Potter characters
that are contained in overpriced serial boxes. There are n different characters,
and each box contains one character. She wants to get the complete set.
How many boxes does she have to buy, on average, to obtain one complete
collection?

Let X denote the random variable counting the number of boxes required
to collect at least one character of each type. Our goal is to determine E[X].
Let Xk denote the random variables counting the number of boxes that the hat
check girl buy to get the (k + 1)-th character, after she has already collected
k characters. The probability to draw one of the remaining characters is
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pk = (n−k)/n. Hence Xk is a geometrically distributed random variable with
parameter pk. Consequently, E[Xk] = 1/pk = n/(n− k).

The random variable X is the given by the sum X =
∑n−1

k=0 Xk. Linearity
of expectation shows that

E[X] =
n−1∑

k=0

E[Xk] =
n−1∑

k=0

n

n− k
= n

n∑

k=1

1
k

= nHn.

Exercise 2.15 Calculate the variance Var[X].

Let X be a random variable defined on a finite probability space (Ω, 2Ω,Pr).
It follows from the definition of the expectation value that there must exist
elements a, b ∈ Ω such that X(a) ≥ E[X] and X(b) ≤ E[X]. These simple
facts are often used to show that certain combinatorial structures must exist.

Bipartite Subgraphs. A graph is bipartite if and only if its vertex set can
be partitioned in two sets A and B such that all edges join a vertex from A
with a vertex from B. Let G = (V, E) be a graph with n = |V | vertices and
e = |E| edges. We want to show that G contains a bipartite subgraph with at
least e/2 edges.

Construct a random subset A of V by tossing a fair coin for each v ∈ V , and
include all vertices with outcome heads in A. Let B denote the complementary
set B = Ac. An edge {x, y} is said to be crossing if exactly one of x and y
is contained in A. Let X be the random variable denoting the number of
crossing edges. Let Xxy be the indicator random variable for the event that
{x, y} is a crossing edge. We have

X =
∑

{x,y}∈E

Xxy.

Clearly, E[Xxy] = Pr[ edge {x, y} is crossing ] = 1/2. Therefore,

E[X] =
∑

{x,y}∈E

E[Xxy] =
e

2
.

It follows that there must exists some choice of A such that X(A) ≥ e/2, and
the corresponding crossing edges form the desired bipartite subgraph.

This example illustrates the probabilistic method which proves the exis-
tence of combinatorial structures satisfying certain constraints by probabilistic
arguments. This and many other examples can be found in the book by Alon
and Spencer [1].
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The Maximum of Geometric Random Variables. A geometric random
variable describes how many times we have to flip a biased coin until we obtain
heads. Suppose that we have n such coins and we toss all of them once in one
round. How many rounds do we need, on average, until heads has occured at
least once for all n coins?

We can model this situation as follows. Let Y1, . . . , Yn be independent
identically distributed random variables that have a common geometric distri-
bution with parameter q. Let X be the random variable X = max(Y1, . . . , Yn).
In other words, X = k denotes the event that after k rounds head has occured
for each coin. Our goal is to compute the expectation value E[X].

The random variable X has non-negative integer values, hence the mean
can be computed by

E[X] =
∞∑

m=0

Pr[X > m] =
∞∑

m=0

(1− Pr[Y1 ≤ m, . . . , Yn ≤ m]) .

The last equality follows from the definition of X, expressed in terms of the
complementary event. The random variables Yk are independent and identi-
cally distributed, hence

E[X] =
∞∑

m=0

(
1− Pr[Y1 ≤ m]n

)
.

For convenience, we set p = 1−q to shorten some expressions. A geometrically
distributed random variable satisfies Pr[Y1 ≤ m] = 1 − (1 − q)m = 1 − pm.
Hence,

E[X] =
∞∑

m=0

(
1−

(
1− (1− q)m

)n)
=

∞∑

m=0

(
1− (

1− pm
)n)

. (2.6)

Exercise 2.16 Derive from equation (2.6) the alternate expression

E[X] =
n∑

k=1

(
n

k

)
(−1)k+1 1

1− (1− q)k
.

§5 Further Reading

There exist an abundance of good introductory text on probability theory.
The book by Grimmett and Stirzaker [3] gives a well-rounded introduction,
and contains numerous excellent exercises. The book by Ross [8] is an eas-
ily readable introduction, which contains a well-chosen number of interesting
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applications. The recent book by Williams [10] gives a lively discussion of
many topics, and covers some computational aspects. The book by Jacod and
Protter [4] gives a solid, but accessible, measure-theoretic treatment of proba-
bility theory. Probability generating functions, and much more, are discussed
in Graham, Knuth, Pataschnik [2].

The book by Alon and Spencer [1] contains numerous applications illus-
trating the probabilistic method. The book by Motwani and Raghavan [7]
gives an introduction to randomized algorithms, and is indispensable for com-
puter scientists.
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