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Motivation

We have discussed serial algorithms that are suitable 
for running on a uniprocessor computer. We will now 
extend our model to parallel algorithms that can run on 
a multiprocessor computer. 
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Computational Model

There exist many competing models of parallel 
computation that are essentially different. For 
example, one can have shared or distributed memory. 

Since multicore processors are ubiquitous, we focus on 
a parallel computing model with shared memory. 
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Dynamic Multithreading

Programming a shared-memory parallel computer can be 
difficult and error-prone. In particular, it is difficult to 
partition the work among several threads so that each 
thread approximately has the same load. 

A concurrency platform is a software layer that 
coordinates, schedules, and manages parallel-computing 
resources. We will use a simple extension of the serial 
programming model that uses the concurrency 
instructions parallel, spawn, and sync.
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Spawn

Spawn: If spawn proceeds a procedure call, then the 
procedure instance that executes the spawn (the 
parent) may continue to execute in parallel with the 
spawned subroutine (the child), instead of waiting for 
the child to complete. 

The keyword spawn does not say that a procedure must 
execute concurrently, but simply that it may.

At runtime, it is up to the scheduler to decide which 
subcomputations should run concurrently. 
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Sync

The keyword sync indicates that the procedure must 
wait for all its spawned children to complete.  
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Parallel

Many algorithms contain loops, where all iterations can 
operate in parallel. If the parallel keyword proceeds a 
for loop, then this indicates that the loop body can be 
executed in parallel.
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Fibonacci Numbers
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Definition

The Fibonacci numbers are defined by the recurrence:

F0 = 0 

F1 = 1

Fi = Fi-1 + Fi-2 

for i > 1. 
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Naive Algorithm

Computing the Fibonacci numbers can be done 
with the following algorithm: 

Fibonacci(n)
if n < 2 then return n; 
x = Fibonacci(n-1);      
y = Fibonacci(n-2) ;                             

return x + y; 
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Caveat: Running Time

Let T(n) denote the running time of Fibonacci(n). Since this 
procedure contains two recursive calls and a constant amount of 
extra work, we get 

T(n) = T(n-1) + T(n-2) + θ(1)

which yields T(n) = θ(Fn)= θ( ((1+sqrt(5))/2)n )

Since this is an exponential growth, this is a particularly bad 
way to calculate Fibonacci numbers.

How would you calculate the Fibonacci numbers? 

Monday, November 26, 2012



Fibonacci Numbers

This allows you to calculate Fn in O(log n) steps by repeated 
squaring of the matrix. This is how you can calculate the 
Fibonacci numbers with a serial algorithm. 

To illustrate the principles of parallel programming, we will use 
the naive (bad) algorithm, though. 

�
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Fibonacci Example

Parallel algorithm to compute Fibonacci numbers:

Fibonacci(n)
if n < 2 then return n; 
x = spawn Fibonacci(n-1);   // parallel execution
y = spawn Fibonacci(n-2) ;  // parallel execution
sync;  // wait for results of x and y                         

return x + y; 
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Computation DAG

Multithreaded computation can be better understood with the 
help of a computation directed acyclic graph G=(V,E). 

The vertices V in the graph are the instructions. 

The edges E represent dependencies between instructions.

An edge (u,v) is in E means that the instruction u must execute 
before instruction v. 

[Problem: Somewhat too detailed. We will group the 
instructions into threads.] 
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Strand and Threads

A sequence of instructions containing no parallel control 
(spawn, sync, return from spawn, parallel) can be 
grouped into a single strand. 

A strand of maximal length will be called a thread. 

Monday, November 26, 2012



Computation DAG

A computation directed acyclic graph G=(V,E) consists a vertex 
set V that comprises the threads of the program. 

The edge set E contains an edge (u,v) if and only if the thread u 
needs to execute before thread v. 

If there is an edge between thread u and v, then they are said 
to be (logically) in series. If there is no thread, then they are 
said to be (logically) in parallel.  
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Edge Classification

A continuation edge (u,v) connects a thread u to its 
successor v within the same procedure instance. 

When a thread u spawns a new thread v, then (u,v) is 
called a spawn edge. 

When a thread v returns to its calling procedure and x 
is the thread following the parallel control, then the 
return edge (v,x) is included in the graph. 

Monday, November 26, 2012



Fibonacci Example

Parallel algorithm to compute Fibonacci numbers:

Fibonacci(n)
if n < 2 then return n;         // thread A
x = spawn Fibonacci(n-1);   
y = spawn Fibonacci(n-2) ;  // thread B
sync;  

return x + y; // thread C
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Fibonacci(4)
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Performance Measures

The work of a multithreaded computation is the total 
time to execute the entire computation on one 
processor.

Work = sum of the times taken by each thread
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Performance Measures

The span is the longest time to execute the threads 
along any path of the computational directed acyclic 
graph. 
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Performance Measure Example

In Fibonacci(4), we have

17 vertices = 17 threads. 

8 vertices on longest path.

Assuming unit time for each 
thread, we get

work = 17 time units

span = 8 time units
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The actual running time of a multithreaded computation 
depends not just on its work and span, but also on how 
many processors (cores) are available, and how the 
scheduler allocates strands to processors. 

Running time on P processors is indicated by subscript P

- T1 running time on a single processor

- TP running time on P processors

- T∞ running time on unlimited processors 
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Work Law

An ideal parallel computer with P processors can do at 
most P units of work. Total work to do is T1. 

Thus, PTp >= T1

The work law is 

Tp >= T1/P
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Span Law

A P-processor ideal parallel computer cannot run faster 
than a machine with unlimited number of processors. 

However, a computer with unlimited number of 
processors can emulate a P-processor machine by using 
simply P of its processors. Therefore, 

Tp >= T∞

which is called the span law. 
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Speedup and Parallelism

The speed up of a computation on P processors is 
defined as T1 / Tp

The parallelism of a multithreaded computation is given 
by T1 / T∞
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Scheduling

The performance depends not just on the work and 
span. Additionally, the strands must be scheduled 
efficiently. 

The strands must be mapped to static threads, and the 
operating system schedules the threads on the 
processors themselves. 

The scheduler must schedule the computation with no 
advance knowledge of when the strands will be spawned 
or when they will complete; it must operate online.
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Greedy Scheduler

We will assume a greedy scheduler in our analysis, since 
this keeps things simple. A greedy scheduler assigns as 
many strands to processors as possible in each time 
step. 

On P processors, if at least P strands are ready to 
execute during a time step, then we say that the step is 
a complete step; otherwise we say that it is an 
incomplete step. 
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Greedy Scheduler Theorem

On an ideal parallel computer with P processors, a 
greedy scheduler executes a multithreaded 
computation with work T1 and span T∞ in time

TP <= T1 / P + T∞

[Given the fact the best we can hope for on P processors is TP   
= T1 / P by the work law, and TP   = T∞  by the span law, the sum 
of these two lower bounds ]
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Proof (1/3)

Let’s consider the complete steps. In each complete step, the P 
processors perform a total of P work. 

Seeking a contradiction, we assume that the number of 
complete steps exceeds T1/P. Then the total work of the 
complete steps is at least 

as this exceeds the total work required by the computation, 
this is impossible.

P (�T1/P �+ 1) = P �T1/P �+ P
= T1 − (T1 mod P ) + P
> T1
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Proof (2/3)

Now consider an incomplete step. Let G be the DAG 
representing the entire computation. W.l.o.g. assume that each 
strand takes unit time (otherwise replace longer strands by a 
chain of unit-time strands). 

Let G’ be the subgraph of G that has yet to be executed at the 
start of the incomplete step, and let G’’ be the subgraph 
remaining to be executed after the completion of the 
incomplete step. 
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Proof (3/3)

A longest path in a DAG must necessarily start at a vertex with 
in-degree 0. Since an incomplete step of a greedy scheduler 
executes all strands with in-degree 0 in G’, the length of the 
longest path in G’’ must be 1 less than the length of the longest 
path in G’. 

Put differently, an incomplete step decreases the span of the 
unexecuted DAG by 1. Thus, the number of incomplete steps is 
at most T∞.

Since each step is either complete or incomplete, the theorem 
follows.     q.e.d. 
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Corollary

The running time of any multithreaded computation scheduled 
by a greedy scheduler on an ideal parallel computer with P 
processors is within a factor of 2 of optimal. 

Proof.: The TP* be the running time produced by an optimal 
scheduler. Let T1 be the work and T∞ be the span of the 
computation. Then TP* >= max(T1 /P, T∞). By the theorem,

TP <= T1 /P + T∞ <= 2 max(T1 /P, T∞) <= 2 TP*
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Slackness

The parallel slackness of a multithreaded computation 
executed on an ideal parallel computer with P 
processors is the ratio of parallelism by P.

Slackness = (T1 / T∞) / P 

If the slackness is less than 1, we cannot hope to 
achieve a linear speedup. 
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Speedup

Let TP be the running time of a multithreaded computation 
produced by a greedy scheduler on an ideal computer with P 
processors. Let T1 be the work and T∞ be the span of the 
computation.  If the slackness is big, P << (T1 / T∞), then 

TP  is approximately T1 / P. 

Proof: If P << (T1 / T∞), then T∞ << T1 / P. Thus, by the theorem, 
TP <= T1 /P + T∞ ≈ T1 /P. By the work law, TP >= T1 /P. Hence,

TP ≈ T1 /P, as claimed. 
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Back to Fibonacci
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Parallel Fibonacci Computation

Parallel algorithm to compute Fibonacci numbers:

Fibonacci(n)
if n < 2 then return n; 
x = spawn Fibonacci(n-1);   // parallel execution
y = spawn Fibonacci(n-2) ;  // parallel execution
sync;  // wait for results of x and y                         

return x + y; 
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Work of Fibonacci

We want to know the work and span of the Fibonacci 
computation, so that we can compute the parallelism 
(work/span) of the computation. 

The work T1 is straightforward, since it amounts to 
compute the running time of the serialized algorithm. 

T1 = θ( ((1+sqrt(5))/2)n )
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Span of Fibonacci

Recall that the span T∞ in the longest path in the computational 
DAG. Since Fibonacci(n) spawns 

• Fibonacci(n-1)

• Fibonacci(n-2)

we have 

T∞(n) = max( T∞(n-1) , T∞(n-2) ) + θ(1) = T∞(n-1) + θ(1)

which yields T∞(n) = θ(n). 
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Parallelism of Fibonacci

The parallelism of the Fibonacci computation is 

T1(n)/T∞(n) = θ( ((1+sqrt(5))/2)n / n)

which grows dramatically as n gets large. 

Therefore, even on the largest parallel computers, a modest 
value of n suffices to achieve near perfect linear speedup, since 
we have considerable parallel slackness. 
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Race Conditions
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Race Conditions

A multithreaded algorithm is deterministic if and only 
if does the same thing on the same input, no matter how 
the instructions are scheduled. 

A multithreaded algorithm is nondeterministic if its 
behavior might vary from run to run. 

Often, a multithreaded algorithm that is intended to be 
deterministic fails to be. 
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Determinacy Race

A determinacy race occurs when two logically parallel 
instructions access the same memory location and at 
least one of the instructions performs a write. 

Race-Example()

x = 0 

parallel for i = 1 to 2 do

  x = x+1

print x
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Determinacy Race

When a processor increments x, the operation is not indivisible, 
but composed of a sequence of instructions. 

1) Read x from memory into one of the processor’s registers

2) Increment the value of the register

3) Write the value in the register back into x in memory
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Determinacy Race

x = 0 

assign r1 = 0 

incr r1, so r1=1

assign r2 = 0

incr r2, so r2 = 1

write back x = r1

write back x = r2

print x  // now prints 1 instead of 2 
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Matrix Multiplication
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Matrix Multiplication

Recall that one can multiply nxn matrices serially in 
time θ( nlog 7) = O( n2.81) using Strassen’s divide-and-
conquer method. 

We will use multithreading for a simpler divide-and-
conquer algorithm. 
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Simple Divide-and-Conquer

To multiply two nxn matrices, we perform 8 matrix 
multiplications of n/2 x n/2 matrices and one addition of n x n 
matrices.
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Addition of Matrices

Matrix-Add(C, T, n):
   // Adds matrices C and T in-place, producing C = C + T
   // n is power of 2 (for simplicity).
   if  n == 1:
     C[1, 1] = C[1, 1] + T[1, 1] 
   else:
     partition C and T into (n/2)x(n/2) submatrices
     spawn Matrix-Add(C11, T11, n/2) 
     spawn Matrix-Add(C12, T12, n/2) 
     spawn Matrix-Add(C21, T21, n/2) 
     spawn Matrix-Add(C22, T22, n/2) 
     sync 
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Matrix Multiplication

Matrix-Multiply(C, A, B, n):
   // Multiplies matrices A and B, storing the result in C.
   // n is power of 2 (for simplicity).
   if  n == 1:
     C[1, 1] = A[1, 1] · B[1, 1] 
   else:
     allocate a temporary matrix T[1...n, 1...n] 
     partition A, B, C, and T into (n/2)x(n/2) submatrices
     spawn Matrix-Multiply(C11,A11,B11, n/2)
     spawn Matrix-Multiply(C12,A11,B12, n/2) 
     spawn Matrix-Multiply(C21,A21,B11, n/2) 
     spawn Matrix-Multiply(C22,A21,B12, n/2) 
     spawn Matrix-Multiply(T11,A12,B21, n/2) 
     spawn Matrix-Multiply(T12,A12,B22, n/2) 
     spawn Matrix-Multiply(T21,A22,B21, n/2) 
     spawn Matrix-Multiply(T22,A22,B22, n/2) 
     sync 
     Matrix-Add(C, T, n)

Monday, November 26, 2012



Work of Matrix Multiplication

The work T1(n) of matrix multiplication satisfies the recurrence

T1(n) = 8 T1(n/2) + θ(n2) = θ(n3)

by case 1 of the Master theorem. 
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Span of Matrix Multiplication

The span T∞(n) of matrix multiplication is determined by

- the span for partitioning θ(1)

- the span of the parallel nested for loops at the end θ(log n)

- the maximum span of the 8 matrix multiplications

T∞(n) = T∞(n/2) + θ(log n)

This recurrence does not fall under any of the cases of the 
Master theorem. One can show that T∞(n) = θ((log n)2)
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Parallelism of Matrix Mult

The parallelism of matrix multiplication is given by 

T1(n) / T∞(n)  = θ(n3 / (log n)2 )

which is very high. 
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