
Multithreaded Algorithms
Andreas Klappenecker

Monday, November 26, 2012

Motivation

We have discussed serial algorithms that are suitable
for running on a uniprocessor computer. We will now
extend our model to parallel algorithms that can run on
a multiprocessor computer.

Monday, November 26, 2012

Computational Model

There exist many competing models of parallel
computation that are essentially different. For
example, one can have shared or distributed memory.

Since multicore processors are ubiquitous, we focus on
a parallel computing model with shared memory.

Monday, November 26, 2012

Dynamic Multithreading

Programming a shared-memory parallel computer can be
difficult and error-prone. In particular, it is difficult to
partition the work among several threads so that each
thread approximately has the same load.

A concurrency platform is a software layer that
coordinates, schedules, and manages parallel-computing
resources. We will use a simple extension of the serial
programming model that uses the concurrency
instructions parallel, spawn, and sync.

Monday, November 26, 2012

Spawn

Spawn: If spawn proceeds a procedure call, then the
procedure instance that executes the spawn (the
parent) may continue to execute in parallel with the
spawned subroutine (the child), instead of waiting for
the child to complete.

The keyword spawn does not say that a procedure must
execute concurrently, but simply that it may.

At runtime, it is up to the scheduler to decide which
subcomputations should run concurrently.

Monday, November 26, 2012

Sync

The keyword sync indicates that the procedure must
wait for all its spawned children to complete.

Monday, November 26, 2012

Parallel

Many algorithms contain loops, where all iterations can
operate in parallel. If the parallel keyword proceeds a
for loop, then this indicates that the loop body can be
executed in parallel.

Monday, November 26, 2012

Fibonacci Numbers

Monday, November 26, 2012

Definition

The Fibonacci numbers are defined by the recurrence:

F0 = 0

F1 = 1

Fi = Fi-1 + Fi-2

for i > 1.

Monday, November 26, 2012

Naive Algorithm

Computing the Fibonacci numbers can be done
with the following algorithm:

Fibonacci(n)
if n < 2 then return n;
x = Fibonacci(n-1);
y = Fibonacci(n-2) ;

return x + y;

Monday, November 26, 2012

Caveat: Running Time

Let T(n) denote the running time of Fibonacci(n). Since this
procedure contains two recursive calls and a constant amount of
extra work, we get

T(n) = T(n-1) + T(n-2) + θ(1)

which yields T(n) = θ(Fn)= θ(((1+sqrt(5))/2)n)

Since this is an exponential growth, this is a particularly bad
way to calculate Fibonacci numbers.

How would you calculate the Fibonacci numbers?

Monday, November 26, 2012

Fibonacci Numbers

This allows you to calculate Fn in O(log n) steps by repeated
squaring of the matrix. This is how you can calculate the
Fibonacci numbers with a serial algorithm.

To illustrate the principles of parallel programming, we will use
the naive (bad) algorithm, though.

�
1 1
1 0

�n

=

�
Fn+1 Fn

Fn Fn−1

�

Monday, November 26, 2012

Fibonacci Example

Parallel algorithm to compute Fibonacci numbers:

Fibonacci(n)
if n < 2 then return n;
x = spawn Fibonacci(n-1); // parallel execution
y = spawn Fibonacci(n-2) ; // parallel execution
sync; // wait for results of x and y

return x + y;

Monday, November 26, 2012

Computation DAG

Multithreaded computation can be better understood with the
help of a computation directed acyclic graph G=(V,E).

The vertices V in the graph are the instructions.

The edges E represent dependencies between instructions.

An edge (u,v) is in E means that the instruction u must execute
before instruction v.

[Problem: Somewhat too detailed. We will group the
instructions into threads.]

Monday, November 26, 2012

Strand and Threads

A sequence of instructions containing no parallel control
(spawn, sync, return from spawn, parallel) can be
grouped into a single strand.

A strand of maximal length will be called a thread.

Monday, November 26, 2012

Computation DAG

A computation directed acyclic graph G=(V,E) consists a vertex
set V that comprises the threads of the program.

The edge set E contains an edge (u,v) if and only if the thread u
needs to execute before thread v.

If there is an edge between thread u and v, then they are said
to be (logically) in series. If there is no thread, then they are
said to be (logically) in parallel.

Monday, November 26, 2012

Edge Classification

A continuation edge (u,v) connects a thread u to its
successor v within the same procedure instance.

When a thread u spawns a new thread v, then (u,v) is
called a spawn edge.

When a thread v returns to its calling procedure and x
is the thread following the parallel control, then the
return edge (v,x) is included in the graph.

Monday, November 26, 2012

Fibonacci Example

Parallel algorithm to compute Fibonacci numbers:

Fibonacci(n)
if n < 2 then return n; // thread A
x = spawn Fibonacci(n-1);
y = spawn Fibonacci(n-2) ; // thread B
sync;

return x + y; // thread C

Monday, November 26, 2012

Fibonacci(4)

Monday, November 26, 2012

Performance Measures

The work of a multithreaded computation is the total
time to execute the entire computation on one
processor.

Work = sum of the times taken by each thread

Monday, November 26, 2012

Performance Measures

The span is the longest time to execute the threads
along any path of the computational directed acyclic
graph.

Monday, November 26, 2012

Performance Measure Example

In Fibonacci(4), we have

17 vertices = 17 threads.

8 vertices on longest path.

Assuming unit time for each
thread, we get

work = 17 time units

span = 8 time units

Monday, November 26, 2012

The actual running time of a multithreaded computation
depends not just on its work and span, but also on how
many processors (cores) are available, and how the
scheduler allocates strands to processors.

Running time on P processors is indicated by subscript P

- T1 running time on a single processor

- TP running time on P processors

- T∞ running time on unlimited processors

Monday, November 26, 2012

Work Law

An ideal parallel computer with P processors can do at
most P units of work. Total work to do is T1.

Thus, PTp >= T1

The work law is

Tp >= T1/P

Monday, November 26, 2012

Span Law

A P-processor ideal parallel computer cannot run faster
than a machine with unlimited number of processors.

However, a computer with unlimited number of
processors can emulate a P-processor machine by using
simply P of its processors. Therefore,

Tp >= T∞

which is called the span law.

Monday, November 26, 2012

Speedup and Parallelism

The speed up of a computation on P processors is
defined as T1 / Tp

The parallelism of a multithreaded computation is given
by T1 / T∞

Monday, November 26, 2012

Scheduling

The performance depends not just on the work and
span. Additionally, the strands must be scheduled
efficiently.

The strands must be mapped to static threads, and the
operating system schedules the threads on the
processors themselves.

The scheduler must schedule the computation with no
advance knowledge of when the strands will be spawned
or when they will complete; it must operate online.

Monday, November 26, 2012

Greedy Scheduler

We will assume a greedy scheduler in our analysis, since
this keeps things simple. A greedy scheduler assigns as
many strands to processors as possible in each time
step.

On P processors, if at least P strands are ready to
execute during a time step, then we say that the step is
a complete step; otherwise we say that it is an
incomplete step.

Monday, November 26, 2012

Greedy Scheduler Theorem

On an ideal parallel computer with P processors, a
greedy scheduler executes a multithreaded
computation with work T1 and span T∞ in time

TP <= T1 / P + T∞

[Given the fact the best we can hope for on P processors is TP
= T1 / P by the work law, and TP = T∞ by the span law, the sum
of these two lower bounds]

Monday, November 26, 2012

Proof (1/3)

Let’s consider the complete steps. In each complete step, the P
processors perform a total of P work.

Seeking a contradiction, we assume that the number of
complete steps exceeds T1/P. Then the total work of the
complete steps is at least

as this exceeds the total work required by the computation,
this is impossible.

P (�T1/P �+ 1) = P �T1/P �+ P
= T1 − (T1 mod P) + P
> T1

Monday, November 26, 2012

Proof (2/3)

Now consider an incomplete step. Let G be the DAG
representing the entire computation. W.l.o.g. assume that each
strand takes unit time (otherwise replace longer strands by a
chain of unit-time strands).

Let G’ be the subgraph of G that has yet to be executed at the
start of the incomplete step, and let G’’ be the subgraph
remaining to be executed after the completion of the
incomplete step.

Monday, November 26, 2012

Proof (3/3)

A longest path in a DAG must necessarily start at a vertex with
in-degree 0. Since an incomplete step of a greedy scheduler
executes all strands with in-degree 0 in G’, the length of the
longest path in G’’ must be 1 less than the length of the longest
path in G’.

Put differently, an incomplete step decreases the span of the
unexecuted DAG by 1. Thus, the number of incomplete steps is
at most T∞.

Since each step is either complete or incomplete, the theorem
follows. q.e.d.

Monday, November 26, 2012

Corollary

The running time of any multithreaded computation scheduled
by a greedy scheduler on an ideal parallel computer with P
processors is within a factor of 2 of optimal.

Proof.: The TP* be the running time produced by an optimal
scheduler. Let T1 be the work and T∞ be the span of the
computation. Then TP* >= max(T1 /P, T∞). By the theorem,

TP <= T1 /P + T∞ <= 2 max(T1 /P, T∞) <= 2 TP*

Monday, November 26, 2012

Slackness

The parallel slackness of a multithreaded computation
executed on an ideal parallel computer with P
processors is the ratio of parallelism by P.

Slackness = (T1 / T∞) / P

If the slackness is less than 1, we cannot hope to
achieve a linear speedup.

Monday, November 26, 2012

Speedup

Let TP be the running time of a multithreaded computation
produced by a greedy scheduler on an ideal computer with P
processors. Let T1 be the work and T∞ be the span of the
computation. If the slackness is big, P << (T1 / T∞), then

TP is approximately T1 / P.

Proof: If P << (T1 / T∞), then T∞ << T1 / P. Thus, by the theorem,
TP <= T1 /P + T∞ ≈ T1 /P. By the work law, TP >= T1 /P. Hence,

TP ≈ T1 /P, as claimed.

Monday, November 26, 2012

Back to Fibonacci

Monday, November 26, 2012

Parallel Fibonacci Computation

Parallel algorithm to compute Fibonacci numbers:

Fibonacci(n)
if n < 2 then return n;
x = spawn Fibonacci(n-1); // parallel execution
y = spawn Fibonacci(n-2) ; // parallel execution
sync; // wait for results of x and y

return x + y;

Monday, November 26, 2012

Work of Fibonacci

We want to know the work and span of the Fibonacci
computation, so that we can compute the parallelism
(work/span) of the computation.

The work T1 is straightforward, since it amounts to
compute the running time of the serialized algorithm.

T1 = θ(((1+sqrt(5))/2)n)

Monday, November 26, 2012

Span of Fibonacci

Recall that the span T∞ in the longest path in the computational
DAG. Since Fibonacci(n) spawns

• Fibonacci(n-1)

• Fibonacci(n-2)

we have

T∞(n) = max(T∞(n-1) , T∞(n-2)) + θ(1) = T∞(n-1) + θ(1)

which yields T∞(n) = θ(n).

Monday, November 26, 2012

Parallelism of Fibonacci

The parallelism of the Fibonacci computation is

T1(n)/T∞(n) = θ(((1+sqrt(5))/2)n / n)

which grows dramatically as n gets large.

Therefore, even on the largest parallel computers, a modest
value of n suffices to achieve near perfect linear speedup, since
we have considerable parallel slackness.

Monday, November 26, 2012

Race Conditions

Monday, November 26, 2012

Race Conditions

A multithreaded algorithm is deterministic if and only
if does the same thing on the same input, no matter how
the instructions are scheduled.

A multithreaded algorithm is nondeterministic if its
behavior might vary from run to run.

Often, a multithreaded algorithm that is intended to be
deterministic fails to be.

Monday, November 26, 2012

Determinacy Race

A determinacy race occurs when two logically parallel
instructions access the same memory location and at
least one of the instructions performs a write.

Race-Example()

x = 0

parallel for i = 1 to 2 do

 x = x+1

print x

Monday, November 26, 2012

Determinacy Race

When a processor increments x, the operation is not indivisible,
but composed of a sequence of instructions.

1) Read x from memory into one of the processor’s registers

2) Increment the value of the register

3) Write the value in the register back into x in memory

Monday, November 26, 2012

Determinacy Race

x = 0

assign r1 = 0

incr r1, so r1=1

assign r2 = 0

incr r2, so r2 = 1

write back x = r1

write back x = r2

print x // now prints 1 instead of 2

Monday, November 26, 2012

Matrix Multiplication

Monday, November 26, 2012

Matrix Multiplication

Recall that one can multiply nxn matrices serially in
time θ(nlog 7) = O(n2.81) using Strassen’s divide-and-
conquer method.

We will use multithreading for a simpler divide-and-
conquer algorithm.

Monday, November 26, 2012

Simple Divide-and-Conquer

To multiply two nxn matrices, we perform 8 matrix
multiplications of n/2 x n/2 matrices and one addition of n x n
matrices.

Monday, November 26, 2012

Addition of Matrices

Matrix-Add(C, T, n):
 // Adds matrices C and T in-place, producing C = C + T
 // n is power of 2 (for simplicity).
 if n == 1:
 C[1, 1] = C[1, 1] + T[1, 1]
 else:
 partition C and T into (n/2)x(n/2) submatrices
 spawn Matrix-Add(C11, T11, n/2)
 spawn Matrix-Add(C12, T12, n/2)
 spawn Matrix-Add(C21, T21, n/2)
 spawn Matrix-Add(C22, T22, n/2)
 sync

Monday, November 26, 2012

Matrix Multiplication

Matrix-Multiply(C, A, B, n):
 // Multiplies matrices A and B, storing the result in C.
 // n is power of 2 (for simplicity).
 if n == 1:
 C[1, 1] = A[1, 1] · B[1, 1]
 else:
 allocate a temporary matrix T[1...n, 1...n]
 partition A, B, C, and T into (n/2)x(n/2) submatrices
 spawn Matrix-Multiply(C11,A11,B11, n/2)
 spawn Matrix-Multiply(C12,A11,B12, n/2)
 spawn Matrix-Multiply(C21,A21,B11, n/2)
 spawn Matrix-Multiply(C22,A21,B12, n/2)
 spawn Matrix-Multiply(T11,A12,B21, n/2)
 spawn Matrix-Multiply(T12,A12,B22, n/2)
 spawn Matrix-Multiply(T21,A22,B21, n/2)
 spawn Matrix-Multiply(T22,A22,B22, n/2)
 sync
 Matrix-Add(C, T, n)

Monday, November 26, 2012

Work of Matrix Multiplication

The work T1(n) of matrix multiplication satisfies the recurrence

T1(n) = 8 T1(n/2) + θ(n2) = θ(n3)

by case 1 of the Master theorem.

Monday, November 26, 2012

Span of Matrix Multiplication

The span T∞(n) of matrix multiplication is determined by

- the span for partitioning θ(1)

- the span of the parallel nested for loops at the end θ(log n)

- the maximum span of the 8 matrix multiplications

T∞(n) = T∞(n/2) + θ(log n)

This recurrence does not fall under any of the cases of the
Master theorem. One can show that T∞(n) = θ((log n)2)

Monday, November 26, 2012

Parallelism of Matrix Mult

The parallelism of matrix multiplication is given by

T1(n) / T∞(n) = θ(n3 / (log n)2)

which is very high.

Monday, November 26, 2012

