
1

Summary: Design Methods
for Algorithms

Andreas Klappenecker

Monday, September 24, 2012

Design Methods

We have discussed examples of the
following algorithm design principles:

•Dynamic Programming Paradigm
•Greedy Paradigm
•Divide-and-Conquer Paradigm

2

Monday, September 24, 2012

Main Question

When can one successfully use one of
these algorithm design paradigms to
solve a problem?

3

Monday, September 24, 2012

Dynamic Programming

4

Monday, September 24, 2012

Dynamic Programming

The development of a dynamic programming algorithm
can be subdivided into the following steps:
1.Characterize the structure of an optimal solution
2.Recursively define the value of an optimal solution
3.Compute the value of an optimal solution in a bottom-
up fashion
4.Construct an optimal solution from computed
information

5

Monday, September 24, 2012

Key Question

• When can we apply the dynamic
programming paradigm?

6

Monday, September 24, 2012

Optimal Substructure

A problem exhibits optimal substructure
if and only if an optimal solution to the
problem contains within it optimal
solutions to subproblems.

Whenever a problem exhibits optimal
substructure, it is an indication that a dynamic
programming or greedy strategy might apply.

7

Monday, September 24, 2012

Overlapping Subproblems

A second indication that dynamic programming
might be applicable is that the space of
subproblems must be small, meaning that a
recursive algorithm for the problem solves the
same subproblems over and over.

Typically, the total number of distinct
subproblems is a polynomial in the input size.
 8

Monday, September 24, 2012

Overlapping Subproblems

When a recursive algorithm revisits the
same problem over and over again, then
we say that the optimization problem has
overlapping subproblems.
Here two subproblems are called
overlapping if and only if they really are
the same subproblem that occurs as a
subproblem of different problems.

9

Monday, September 24, 2012

Note

If a recursive algorithm solving the
problem creates always new subproblems,
then this is an indication that divide-and-
conquer methods rather than dynamic
programming might apply.

10

Monday, September 24, 2012

Greedy Algorithms

11

Monday, September 24, 2012

Greedy Algorithms
The development of a greedy algorithm can be separated into
the following steps:
1.Cast the optimization problem as one in which we make a
choice and are left with one subproblem to solve.

2.Prove that there is always an optimal solution to the original
problem that makes the greedy choice, so that the greedy
choice is always safe.

3.Demonstrate that, having made the greedy choice, what
remains is a subproblem with the property that if we combine
an optimal solution to the subproblem with the greedy choice
that we have made, we arrive at an optimal solution to the
original problem. 12

Monday, September 24, 2012

Greedy-Choice Property

The greedy choice property is that a
globally optimal solution can be arrived at
by making a locally optimal (=greedy)
choice.

13

Monday, September 24, 2012

Optimal Substructure

A problem exhibits optimal substructure
if and only if an optimal solution to the
problem contains within it optimal
solutions to subproblems.

14

Monday, September 24, 2012

Divide-and-Conquer

15

Monday, September 24, 2012

Divide-and-Conquer

A divide and conquer method can be used for problems
that can be solved by recursively breaking them down
into two or more sub-problems of the same (or related)
type, until these become simple enough to be solved
directly. The solutions to the sub-problems are then
combined to give a solution to the original problem.

This approach is particularly successful when the
number of subproblems remain small in each step and
combining the solutions is easily done.

16

Monday, September 24, 2012

Read the Book

• You should study the book thoroughly
• Chapter 15 Dynamic Programming
• Chapter 16 Greedy Algorithms
• Chapter 2 on Divide and Conquer
• Chapter 4 on Recurrences
• For all of the above, you need Chapter 3

on Growth of Functions
17

Monday, September 24, 2012

How should I read the book?

18

Monday, September 24, 2012

How should I read the book?

19

Monday, September 24, 2012

