
Divide and Conquer

Andreas Klappenecker

[based on slides by Prof. Welch]

Friday, September 7, 2012

Divide and Conquer
Paradigm

• An important general technique for designing
algorithms:

• divide problem into subproblems

• recursively solve subproblems

• combine solutions to subproblems to get
solution to original problem

• Use recurrences to analyze the running time of
such algorithms

Friday, September 7, 2012

Mergesort

Friday, September 7, 2012

Example: Mergesort

• DIVIDE the input sequence in half

• RECURSIVELY sort the two halves

• basis of the recursion is sequence with 1 key

• COMBINE the two sorted subsequences by
merging them

Friday, September 7, 2012

Mergesort Example

1 32 42 5 66

2 64 5 1 2 63

5 2 64 1 3 62

5 2 64

2 5 64

1 3

1 3

62

62

5 62 4

5 62 14 3 62

1 3 62

Friday, September 7, 2012

Mergesort Animation

• http://ccl.northwestern.edu/netlogo/models/
run.cgi?MergeSort.862.378

Friday, September 7, 2012

http://ccl.northwestern.edu/netlogo/models/run.cgi?MergeSort.862.378
http://ccl.northwestern.edu/netlogo/models/run.cgi?MergeSort.862.378
http://ccl.northwestern.edu/netlogo/models/run.cgi?MergeSort.862.378
http://ccl.northwestern.edu/netlogo/models/run.cgi?MergeSort.862.378

Recurrence Relation for
Mergesort

• Let T(n) be worst case time on a sequence of n
keys

• If n = 1, then T(n) = Θ(1) (constant)

• If n > 1, then T(n) = 2 T(n/2) + Θ(n)

• two subproblems of size n/2 each that are
solved recursively

• Θ(n) time to do the merge

Friday, September 7, 2012

Recurrence Relations

Friday, September 7, 2012

How To Solve Recurrences
• Ad hoc method:

• expand several times

• guess the pattern

• can verify with proof by induction

• Master theorem

• general formula that works if recurrence has the
form T(n) = aT(n/b) + f(n)

• a is number of subproblems

• n/b is size of each subproblem
Friday, September 7, 2012

Master Theorem
Consider a recurrence of the form

! T(n) = a T(n/b) + f(n)!

with a>=1, b>1, and f(n) eventually positive.

a)If f(n) = O(nlogb(a)-ε), then T(n)=Θ(nlogb(a)).

b)If f(n) = Θ(nlogb(a)), then T(n)=Θ(nlogb(a) log(n)).

c) If f(n) = Ω(nlogb(a)+ε) and f(n) is regular,
then T(n)=Θ(f(n))

[f(n) regular iff eventually af(n/b)<= cf(n) for
some constant c<1]

Friday, September 7, 2012

Excuse me, what did it
say???

Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

with the function g(n)=nlogb(a).

Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

with the function g(n)=nlogb(a).

Roughly, the theorem says:

Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

with the function g(n)=nlogb(a).

Roughly, the theorem says:

a) If f(n) << g(n) then T(n)=Θ(g(n)).

Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

with the function g(n)=nlogb(a).

Roughly, the theorem says:

a) If f(n) << g(n) then T(n)=Θ(g(n)).

b) If f(n) ≈ g(n) then T(n)=Θ(g(n)log(n)).

Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

with the function g(n)=nlogb(a).

Roughly, the theorem says:

a) If f(n) << g(n) then T(n)=Θ(g(n)).

b) If f(n) ≈ g(n) then T(n)=Θ(g(n)log(n)).

c) If f(n) >> g(n) then T(n)=Θ(f(n)).

Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

with the function g(n)=nlogb(a).

Roughly, the theorem says:

a) If f(n) << g(n) then T(n)=Θ(g(n)).

b) If f(n) ≈ g(n) then T(n)=Θ(g(n)log(n)).

c) If f(n) >> g(n) then T(n)=Θ(f(n)).

Now go back and memorize the theorem!
Friday, September 7, 2012

Excuse me, what did it
say???

Essentially, the Master theorem compares the
function f(n)

with the function g(n)=nlogb(a).

Roughly, the theorem says:

a) If f(n) << g(n) then T(n)=Θ(g(n)).

b) If f(n) ≈ g(n) then T(n)=Θ(g(n)log(n)).

c) If f(n) >> g(n) then T(n)=Θ(f(n)).

Now go back and memorize the theorem!

Friday, September 7, 2012

Déjà vu: Master Theorem
Consider a recurrence of the form

! T(n) = a T(n/b) + f(n)!

with a>=1, b>1, and f(n) eventually positive.

a)If f(n) = O(nlogb(a)-ε), then T(n)=Θ(nlogb(a)).

b)If f(n) = Θ(nlogb(a)), then T(n)=Θ(nlogb(a) log(n)).

c) If f(n) = Ω(nlogb(a)+ε) and f(n) is regular,
then T(n)=Θ(f(n))

[f(n) regular iff eventually af(n/b)<= cf(n) for
some constant c<1]

Friday, September 7, 2012

Nothing is perfect…

The Master theorem does not cover all possible
cases. For example, if

! f(n) = Θ(nlogb(a) log n),

then we lie between cases 2) and 3), but the
theorem does not apply.

There exist better versions of the Master theorem
that cover more cases, but these are even harder
to memorize.

Friday, September 7, 2012

Idea of the Proof
Let us iteratively substitute the recurrence:

Friday, September 7, 2012

Idea of the Proof
Thus, we obtained

! T(n) = nlogb(a) T(1) + Σ ai f(n/bi)

The proof proceeds by distinguishing three cases:

1) The first term in dominant: f(n) = O(nlogb(a)-ε)

2)Each part of the summation is equally dominant:
f(n) = Θ(nlogb(a))

3)The summation can be bounded by a geometric
series: f(n) = Ω(nlogb(a)+ε) and the regularity of f is
key to make the argument work.

Friday, September 7, 2012

Further Divide and
Conquer Examples

Friday, September 7, 2012

Additional D&C
Algorithms

• binary search

• divide sequence into two halves by comparing search key to
midpoint

• recursively search in one of the two halves

• combine step is empty

• quicksort

• divide sequence into two parts by comparing pivot to each key

• recursively sort the two parts

• combine step is empty

Friday, September 7, 2012

Additional D&C applications
• computational geometry

• finding closest pair of points

• finding convex hull

• mathematical calculations

• converting binary to decimal

• integer multiplication

• matrix multiplication

• matrix inversion

• Fast Fourier Transform
Friday, September 7, 2012

Strassen’s Matrix Multiplication

Friday, September 7, 2012

Matrix Multiplication
• Consider two n by n matrices A and B

• Definition of AxB is n by n matrix C whose (i,j)-
th entry is computed like this:

• consider row i of A and column j of B

• multiply together the first entries of the rown and
column, the second entries, etc.

• then add up all the products

• Number of scalar operations (multiplies and adds)
in straightforward algorithm is O(n3).

• Can we do it faster?
Friday, September 7, 2012

Divide-and-Conquer

• Divide matrices A and B into four submatrices each

• We have 8 smaller matrix multiplications and 4
additions. Is it faster?

 A × B = C
A0 A1

A2 A3

B0 B1

B2 B3

A0×B0+A1× A0×B1+A1×

A2×B0+A3× A2×B1+A3×
× =

Friday, September 7, 2012

Divide-and-Conquer
Let us investigate this recursive version of
the matrix multiplication.

Since we divide A, B and C into 4
submatrices each, we can compute the
resulting matrix C by

• 8 matrix multiplications on the
submatrices of A and B,

• plus Θ(n2) scalar operations
Friday, September 7, 2012

Divide-and-Conquer

Friday, September 7, 2012

Divide-and-Conquer
• Running time of recursive version of

straightfoward algorithm is

• T(n) = 8T(n/2) + Θ(n2)

• T(2) = Θ(1)

where T(n) is running time on an n x n matrix

Friday, September 7, 2012

Divide-and-Conquer
• Running time of recursive version of

straightfoward algorithm is

• T(n) = 8T(n/2) + Θ(n2)

• T(2) = Θ(1)

where T(n) is running time on an n x n matrix

• Master theorem gives us:

Friday, September 7, 2012

Divide-and-Conquer
• Running time of recursive version of

straightfoward algorithm is

• T(n) = 8T(n/2) + Θ(n2)

• T(2) = Θ(1)

where T(n) is running time on an n x n matrix

• Master theorem gives us:

! ! T(n) = Θ(n3)

Friday, September 7, 2012

Divide-and-Conquer
• Running time of recursive version of

straightfoward algorithm is

• T(n) = 8T(n/2) + Θ(n2)

• T(2) = Θ(1)

where T(n) is running time on an n x n matrix

• Master theorem gives us:

! ! T(n) = Θ(n3)

• Can we do fewer recursive calls (fewer
multiplications of the n/2 x n/2 submatrices)?

Friday, September 7, 2012

Strassen’s Matrix

P1 = (A11+ A22)(B11+B22)
P2 = (A21 + A22) * B11
P3 = A11 * (B12 - B22)
P4 = A22 * (B21 - B11)
P5 = (A11 + A12) * B22
P6 = (A21 - A11) * (B11 + B12)
P7 = (A12 - A22) * (B21 + B22)

C11 = P1 + P4 - P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 + P3 - P2 + P6

 A × B = C .
A0 A1

A2 A3

B0 B1

B2 B3

C11 C12

C21 C22
× =

Friday, September 7, 2012

Strassen's Matrix
Multiplication

• Strassen found a way to get all the required
information with only 7 matrix multiplications,
instead of 8.

• Recurrence for new algorithm is

• T(n) = 7T(n/2) + Θ(n2)

Friday, September 7, 2012

Solving the Recurrence
Relation

Applying the Master Theorem to

! T(n) = a T(n/b) + f(n)

with a=7, b=2, and f(n)=Θ(n2).

Since f(n) = O(nlogb(a)-ε) = O(nlog2(7)-ε),

case a) applies and we get

! T(n)= Θ(nlogb(a)) = Θ(nlog2(7)) = O(n2.81).

Friday, September 7, 2012

Discussion of Strassen's
Algorithm

• Not always practical

• constant factor is larger than for naïve method

• specially designed methods are better on sparse matrices

• issues of numerical (in)stability

• recursion uses lots of space

• Not the fastest known method

• Fastest known is O(n2.3727) [Winograd-Coppersmith
algorithm improved by V. Williams]

• Best known lower bound is Ω(n2)
Friday, September 7, 2012

Fast Integer
Multiplication

Friday, September 7, 2012

Integer Multiplication
Elementary school algorithm (in binary)

 101001 = 41

 x 101010 = 42

 1010100

 1010100

+ 1010100

11010111010 = 1722
Friday, September 7, 2012

Integer Multiplication
Elementary school algorithm (in binary)

 101001 = 41

 x 101010 = 42

 1010100

 1010100

+ 1010100

11010111010 = 1722

Scan second number from
right to left. Whenever you
see a 1, add the first number
to the result shifted by the
appropriate number of bits.

Friday, September 7, 2012

Integer Multiplication

The multiplication of two n bits numbers takes
Ω(n2) time using the elementary school
algorithm.

Can we do better?

Kolmogorov conjectured in one of his seminars
that one cannot, but was proved wrong by
Karatsuba.

Friday, September 7, 2012

Divide and Conquer

Let’s split the two integers X and Y into two
parts: their most significant part and their
least significant part.

X = 2n/2A + B (where A and B are n/2 bit
integers)

Y = 2n/2C + D (where C and D are n/2 bit
integers)

XY = 2nAC + 2n/2BC + 2n/2AD + BD.

Friday, September 7, 2012

How Did We Do?

Multiplication by 2x can be done in hardware
with very low cost (just a shift).

We can apply this algorithm recursively:

We replaced one multiplication of n bits
numbers by four multiplications of n/2 bits
numbers and 3 shifts and 3 additions

T(n) = 4T(n/2) + cn

Friday, September 7, 2012

Solve the Recurrence

T(n) = 4T(n/2) + cn

By the Master theorem, g(n) = nlog2(4) = n2.

Since cn = O(n2-epsilon), we can conclude that
T(n) = Θ(n2).

Friday, September 7, 2012

How can we do better?

Suppose that we are able to reduce the
number of multiplications from 4 to 3, allowing
for more additions and shifts (but still a
constant number).

Then T(n) = 3T(n/2) + dn

Master theorem: dn = O(nlog2(3)-epsilon), so we get
T(n) = O(nlog2(3)) = O(n1.585).

Friday, September 7, 2012

Karatsuba’s Idea

Let’s rewrite

XY = 2nAC + 2n/2BC + 2n/2AD + BD

in the form

XY = (2n - 2n/2)AC + 2n/2(A+B)(C+D) + (1-2n/2)BD.

Done! Wow!

Friday, September 7, 2012

Summary

Split input X into two parts A and B such that
X = 2n/2A + B.

Split input Y into two parts C and D such that

Y = 2n/2C + D.

Then calculate AC, (A+B)(C+D), BD.

Copy and shift the results, and add/subtract:

XY = (2n - 2n/2)AC + 2n/2(A+B)(C+D) + (1-2n/2)BD.

Friday, September 7, 2012

