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Divide and Conquer 
Paradigm

• An important general technique for designing 
algorithms:

• divide problem into subproblems

• recursively solve subproblems

• combine solutions to subproblems to get 
solution to original problem

• Use recurrences to analyze the running time of 
such algorithms
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Mergesort
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Example: Mergesort

• DIVIDE the input sequence in half

• RECURSIVELY sort the two halves

• basis of the recursion is sequence with 1 key

• COMBINE the two sorted subsequences by 
merging them
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Mergesort Example

1 32 42 5 66

2 64 5 1 2 63

5 2 64 1 3 62

5 2 64

2 5 64

1 3

1 3

62

62

5 62 4

5 62 14 3 62

1 3 62
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Mergesort Animation

• http://ccl.northwestern.edu/netlogo/models/
run.cgi?MergeSort.862.378
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Recurrence Relation for 
Mergesort

• Let T(n) be worst case time on a sequence of n 
keys

• If n = 1, then T(n) = Θ(1) (constant)

• If n > 1, then T(n) = 2 T(n/2) + Θ(n) 

• two subproblems of size n/2 each that are 
solved recursively

• Θ(n) time to do the merge
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Recurrence Relations
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How To Solve Recurrences
• Ad hoc method:  

• expand several times

• guess the pattern

• can verify with proof by induction

• Master theorem

• general formula that works if recurrence has the 
form T(n) = aT(n/b) + f(n)

• a is number of subproblems

• n/b is size of each subproblem
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Master Theorem
Consider a recurrence of the form

! T(n) = a T(n/b) + f(n)!

with a>=1, b>1, and f(n) eventually positive.

a)If f(n) = O(nlogb(a)-ε), then T(n)=Θ(nlogb(a)). 

b)If  f(n) = Θ(nlogb(a) ), then T(n)=Θ(nlogb(a) log(n)). 

c) If f(n) = Ω(nlogb(a)+ε) and f(n) is regular,    
then T(n)=Θ(f(n))

[f(n)  regular iff eventually af(n/b)<= cf(n) for 
some constant c<1]
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Excuse me, what did it 
say???
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function f(n) 
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Excuse me, what did it 
say???

Essentially, the Master theorem compares the 
function f(n) 

with the function g(n)=nlogb(a).

Roughly, the theorem says: 

a) If f(n) << g(n) then T(n)=Θ(g(n)).

b) If f(n) ≈ g(n) then T(n)=Θ(g(n)log(n)).

c) If f(n) >> g(n) then T(n)=Θ(f(n)).

Now go back and memorize the theorem!
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function f(n) 

with the function g(n)=nlogb(a).
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Déjà vu: Master Theorem
Consider a recurrence of the form

! T(n) = a T(n/b) + f(n)!

with a>=1, b>1, and f(n) eventually positive.

a)If f(n) = O(nlogb(a)-ε), then T(n)=Θ(nlogb(a)). 

b)If  f(n) = Θ(nlogb(a) ), then T(n)=Θ(nlogb(a) log(n)). 

c) If f(n) = Ω(nlogb(a)+ε) and f(n) is regular,    
then T(n)=Θ(f(n))

[f(n)  regular iff eventually af(n/b)<= cf(n) for 
some constant c<1]
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Nothing is perfect…

The Master theorem does not cover all possible 
cases. For example, if 

! f(n) = Θ(nlogb(a) log n), 

then we lie between cases 2) and 3), but the 
theorem does not apply. 

There exist better versions of the Master theorem 
that cover more cases, but these are even harder 
to memorize. 
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Idea of the Proof
Let us iteratively substitute the recurrence: 
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Idea of the Proof
Thus, we obtained 

! T(n) = nlogb(a) T(1) + Σ ai f(n/bi)

The proof proceeds by distinguishing three cases: 

1) The first term in dominant: f(n) = O(nlogb(a)-ε)

2)Each part of the summation is equally dominant: 
f(n) = Θ(nlogb(a) )

3)The summation can be bounded by a geometric 
series: f(n) = Ω(nlogb(a)+ε) and the regularity of f is 
key to make the argument work. 
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Further Divide and 
Conquer Examples
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Additional D&C 
Algorithms

• binary search

• divide sequence into two halves by comparing search key to 
midpoint 

• recursively search in one of the two halves

• combine step is empty

• quicksort

• divide sequence into two parts by comparing pivot to each key

• recursively sort the two parts

• combine step is empty
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Additional D&C applications
• computational geometry

• finding closest pair of points

• finding convex hull

• mathematical calculations

• converting binary to decimal

• integer multiplication

• matrix multiplication

• matrix inversion

• Fast Fourier Transform
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Strassen’s Matrix Multiplication
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Matrix Multiplication
• Consider two n by n matrices A and B

• Definition of AxB is n by n matrix C whose (i,j)-
th entry is computed like this:

• consider row i of A and column j of B

• multiply together the first entries of the rown and 
column, the second entries, etc.

• then add up all the products

• Number of scalar operations (multiplies and adds) 
in straightforward algorithm is O(n3).

• Can we do it faster?
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Divide-and-Conquer

• Divide matrices A and B into four submatrices each

• We have 8 smaller matrix multiplications and 4 
additions. Is it faster? 

    A     ×      B     =             C
A0 A1

A2 A3

B0 B1

B2 B3

A0×B0+A1× A0×B1+A1×

A2×B0+A3× A2×B1+A3×
× =
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Divide-and-Conquer
Let us investigate this recursive version of 
the matrix multiplication. 

Since we divide A, B and C into 4 
submatrices each, we can compute the 
resulting matrix C by 

•  8 matrix multiplications on the 
submatrices  of A and B, 

• plus Θ(n2) scalar operations
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Divide-and-Conquer
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Divide-and-Conquer
• Running time of recursive version of 

straightfoward algorithm is

• T(n) = 8T(n/2) + Θ(n2)

• T(2) = Θ(1)

where T(n) is running time on an n x n matrix
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Divide-and-Conquer
• Running time of recursive version of 

straightfoward algorithm is

• T(n) = 8T(n/2) + Θ(n2)

• T(2) = Θ(1)

where T(n) is running time on an n x n matrix

• Master theorem gives us:

! ! T(n) = Θ(n3)

• Can we do fewer recursive calls (fewer 
multiplications of the n/2 x n/2 submatrices)?
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Strassen’s Matrix 

P1 = (A11+ A22)(B11+B22) 
P2 = (A21 + A22) * B11 
P3 = A11 * (B12 - B22) 
P4 = A22 * (B21 - B11) 
P5 = (A11 + A12) * B22 
P6 = (A21 - A11) * (B11 + B12) 
P7 = (A12 - A22) * (B21 + B22) 

C11 = P1 + P4 - P5 + P7
C12 = P3 + P5 
C21 = P2 + P4 
C22 = P1 + P3 - P2 + P6 

    A     ×      B     =           C         .        
A0 A1

A2 A3

B0 B1

B2 B3

C11  C12

C21 C22
× =
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Strassen's Matrix 
Multiplication

• Strassen found a way to get all the required 
information with only 7 matrix multiplications, 
instead of 8.

• Recurrence for new algorithm is

• T(n) = 7T(n/2) + Θ(n2)
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Solving the Recurrence 
Relation

Applying the Master Theorem to

! T(n) = a T(n/b) + f(n)

with a=7, b=2, and f(n)=Θ(n2). 

Since f(n) = O(nlogb(a)-ε) = O(nlog2(7)-ε), 

case a) applies and we get 

! T(n)= Θ(nlogb(a)) = Θ(nlog2(7)) = O(n2.81). 
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Discussion of Strassen's 
Algorithm

• Not always practical

• constant factor is larger than for naïve method

• specially designed methods are better on sparse matrices

• issues of numerical (in)stability

• recursion uses lots of space

• Not the fastest known method

• Fastest known is O(n2.3727) [Winograd-Coppersmith 
algorithm improved by V. Williams]

• Best known lower bound is Ω(n2)
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Fast Integer 
Multiplication
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Integer Multiplication
Elementary school algorithm (in binary)

       101001 = 41

     x 101010 = 42

--------------------

        1010100

     1010100

+ 1010100

--------------------

11010111010 = 1722
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Integer Multiplication
Elementary school algorithm (in binary)

       101001 = 41

     x 101010 = 42

--------------------

        1010100

     1010100

+ 1010100

--------------------

11010111010 = 1722

Scan second number from 
right to left. Whenever you 
see a 1, add the first number 
to the result shifted by the  
appropriate number of bits.
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Integer Multiplication

The multiplication of two n bits numbers takes 
Ω(n2) time using the elementary school 
algorithm.

Can we do better? 

Kolmogorov conjectured in one of his seminars 
that one cannot, but was proved wrong by 
Karatsuba. 
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Divide and Conquer

Let’s split the two integers X and Y into two 
parts: their most significant part and their 
least significant part. 

X = 2n/2A + B (where A and B are n/2 bit 
integers)

Y = 2n/2C + D (where C and D are n/2 bit 
integers)

XY = 2nAC + 2n/2BC + 2n/2AD + BD.
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How Did We Do? 

Multiplication by 2x can be done in hardware 
with very low cost (just a shift).

We can apply this algorithm recursively: 

We replaced one multiplication of n bits 
numbers by four multiplications of n/2 bits 
numbers and 3 shifts and 3 additions

T(n) = 4T(n/2) + cn
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Solve the Recurrence

T(n) = 4T(n/2) + cn

By the Master theorem, g(n) = nlog2(4) = n2.

Since cn = O(n2-epsilon), we can conclude that  
T(n) = Θ(n2). 
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How can we do better?

Suppose that we are able to reduce the 
number of multiplications from 4 to 3, allowing 
for more additions and shifts (but still a 
constant number).

Then T(n) = 3T(n/2) + dn

Master theorem: dn = O(nlog2(3)-epsilon), so we get 
T(n) = O(nlog2(3)) = O(n1.585).
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Karatsuba’s Idea

Let’s rewrite

XY = 2nAC + 2n/2BC + 2n/2AD + BD

in the form

XY = (2n - 2n/2)AC + 2n/2(A+B)(C+D) + (1-2n/2)BD.

Done! Wow!
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Summary

Split input X into two parts A and B such that     
X = 2n/2A + B.

Split input Y into two parts C and D such that 

Y = 2n/2C + D.

Then calculate AC, (A+B)(C+D), BD. 

Copy and shift the results, and add/subtract: 

XY = (2n - 2n/2)AC + 2n/2(A+B)(C+D) + (1-2n/2)BD.
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