Sorting Lower Bound

Andreas Klappenecker
based on slides by Prof. Welch
Insertion Sort Review

- How it works:
 - incrementally build up longer and longer prefix of the array of keys that is in sorted order
 - take the current key, find correct place in sorted prefix, and shift to make room to insert it
- Finding the correct place relies on comparing current key to keys in sorted prefix
- Worst-case running time is $\Theta(n^2)$
Insertion Sort Demo

- http://sorting-algorithms.com
Heapsort Review

- How it works:
 - put the keys in a heap data structure
 - repeatedly remove the min from the heap
- Manipulating the heap involves comparing keys to each other
- Worst-case running time is $\Theta(n \log n)$
Heapsort Demo

- http://www.sorting-algorithms.com
Mergesort Review

- How it works:
 - split the array of keys in half
 - recursively sort the two halves
 - merge the two sorted halves

- Merging the two sorted halves involves comparing keys to each other

- Worst-case running time is $\Theta(n \log n)$
Mergesort Demo

- http://www.sorting-algorithms.com
Quicksort Review

- How it works:
 - choose one key to be the pivot
 - partition the array of keys into those keys < the pivot and those ≥ the pivot
 - recursively sort the two partitions

- Partitioning the array involves comparing keys to the pivot

- Worst-case running time is Θ(n^2)
Quicksort Demo

http://www.sorting-algorithms.com
Comparison-Based Sorting

- All these algorithms are comparison-based
 - the behavior depends on relative values of keys, not exact values
 - behavior on [1,3,2,4] is same as on [9,25,23,99]
- Fastest of these algorithms was $O(n \log n)$.
- We will show that's the best you can get with comparison-based sorting.
Decision Tree

- Consider any comparison based sorting algorithm
- Represent its behavior on all inputs of a fixed size with a decision tree
- Each tree node corresponds to the execution of a comparison
- Each tree node has two children, depending on whether the parent comparison was true or false
- Each leaf represents correct sorted order for that path
Decision Tree Diagram

first comparison:
check if $a_i \leq a_j$
Decision Tree Diagram

first comparison:
check if $a_i \leq a_j$

YES
Decision Tree Diagram

first comparison: check if $a_i \leq a_j$

YES

second comparison
if $a_i \leq a_j$: check if $a_k \leq a_l$
Decision Tree Diagram

first comparison:
check if $a_i \leq a_j$

YES

second comparison
if $a_i \leq a_j$: check if
$a_k \leq a_i$

YES
Decision Tree Diagram

first comparison:
check if \(a_i \leq a_j \)

YES

second comparison
if \(a_i \leq a_j \): check if
\(a_k \leq a_l \)

YES

third comparison
if \(a_i \leq a_j \) and \(a_k \leq a_l \):
check if \(a_x \leq a_y \)
Decision Tree Diagram

first comparison:
check if $a_i \leq a_j$

YES NO

second comparison
if $a_i \leq a_j$: check if
$a_k \leq a_l$

YES

third comparison
if $a_i \leq a_j$ and $a_k \leq a_l$:
check if $a_x \leq a_y$
Decision Tree Diagram

first comparison:
check if $a_i \leq a_j$

YES

second comparison
if $a_i \leq a_j$: check if
$a_k \leq a_l$

YES

third comparison
if $a_i \leq a_j$ and $a_k \leq a_l$:
check if $a_x \leq a_y$

NO

second comparison
if $a_i > a_j$: check if
$a_m \leq a_p$
Decision Tree Diagram

first comparison:
check if \(a_i \leq a_j \)

YES

second comparison
if \(a_i \leq a_j \): check if
\(a_k \leq a_l \)

YES

third comparison
if \(a_i \leq a_j \) and \(a_k \leq a_l \):
check if \(a_x \leq a_y \)

YES

NO

second comparison
if \(a_i > a_j \): check if
\(a_m \leq a_p \)

YES

NO

NO

Thursday, August 30, 2012
Insertion Sort

for j := 2 to n to
 key := a[j]
 i := j-1
 while i > 0 and a[i] > key do
 a[i+1] := a[i]
 i := i -1
 endwhile
 a[i+1] := key
endfor
Insertion Sort for $n = 3$

$a_1 \leq a_2$?
Insertion Sort for $n = 3$

YES

$a_1 \leq a_2$?
Insertion Sort for $n = 3$

Graph:

- $a_1 \leq a_2$?
 - YES
- $a_2 \leq a_3$?
Insertion Sort for \(n = 3 \)

\[
\begin{align*}
 a_1 &\leq a_2 \ ? \\
 a_2 &\leq a_3 \ ? \\
 \text{YES} &
\end{align*}
\]
Insertion Sort for $n = 3$
Insertion Sort for \(n = 3 \)

- \(a_1 \leq a_2 \) ?
 - YES
- \(a_2 \leq a_3 \) ?
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - YES
 - $a_2 \leq a_3$?
 - NO
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - YES
 - $a_2 \leq a_3$?
 - NO
 - $a_1 \leq a_3$?
Insertion Sort for \(n = 3 \)

- \(a_1 \leq a_2 ? \)
 - YES
 - \(a_2 \leq a_3 ? \)
 - YES
 - \(a_1 \leq a_3 ? \)
 - YES
 - NO
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

YES

$a_2 \leq a_3$?

NO

$a_1 \leq a_3$?

YES

$\begin{align*} a_1 & \leq a_2 \\ a_2 & \leq a_3 \quad \text{YES} \\ a_1 & \leq a_3 \quad \text{YES} \end{align*}$
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - YES
 - $a_2 \leq a_3$?
 - NO
 - $a_1 \leq a_3$?
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - YES
 - $a_2 \leq a_3$?
 - YES
 - $a_1 \leq a_3$?
 - NO
 - NO
 - NO
 - NO
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

YES

$a_2 \leq a_3$?

NO

$a_1 \leq a_3$?

NO

$a_3 \ a_1 \ a_2$
Insertion Sort for $n = 3$

$a_1 \leq a_2$?
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

NO
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

NO

$a_1 \leq a_3$?
Insertion Sort for \(n = 3 \)

\[a_1 \leq a_2 ? \]

- **NO**
 - \[a_1 \leq a_3 ? \]
 - **YES**
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - NO
 - $a_1 \leq a_3$?
 - YES
 - $a_2 \ a_1 \ a_3$
Insertion Sort for \(n = 3 \)

\[a_1 \leq a_2 \? \]

\[\text{NO} \]

\[a_1 \leq a_3 \? \]
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

NO

$a_1 \leq a_3$?

NO
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - NO
- $a_1 \leq a_3$?
 - NO
- $a_2 \leq a_3$?
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

- NO

$a_1 \leq a_3$?

- NO

$a_2 \leq a_3$?

- YES

- NO

- YES
Insertion Sort for \(n = 3 \)

\[
\begin{align*}
& a_1 \leq a_2 \ ? \\
& a_1 \leq a_3 \ ? \\
& a_2 \leq a_3 \ ? \\
& a_2 \ a_3 \ a_1
\end{align*}
\]
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

NO

$a_1 \leq a_3$?

NO

$a_2 \leq a_3$?
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - NO
- $a_1 \leq a_3$?
 - NO
- $a_2 \leq a_3$?
 - NO
Insertion Sort for $n = 3$

$a_1 \leq a_2$?

- NO

$a_1 \leq a_3$?

- NO

$a_2 \leq a_3$?

- NO

a_3, a_2, a_1
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - YES: $a_1 a_2 a_3$
 - NO: $a_2 \leq a_3$?
 - YES: $a_1 a_3 a_2$
 - NO: $a_1 \leq a_3$?
 - YES: $a_3 a_1 a_2$
 - NO: $a_2 \leq a_3$?
 - YES: $a_2 a_3 a_1$
 - NO: $a_3 a_2 a_1$
How Many Leaves?

- Must be at least one leaf for each permutation of the input
 - otherwise there would be a situation that was not correctly sorted

- Number of permutations of n keys is $n!$.

- Idea: since there must be a lot of leaves, but each decision tree node only has two children, tree cannot be too shallow
 - depth of tree is a lower bound on running time
Key Lemma
Key Lemma

Height of a binary tree with \(n! \) leaves is
Key Lemma

Height of a binary tree with \(n! \) leaves is \(\Omega(n \log n) \).
Key Lemma

Height of a binary tree with \(n! \) leaves is \(\Omega(n \log n) \).

Proof: The maximum number of leaves in a binary tree with height \(h \) is \(2^h \).
Key Lemma

Height of a binary tree with $n!$ leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.
Key Lemma

Height of a binary tree with $n!$ leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.
Key Lemma

Height of a binary tree with $n!$ leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.
Key Lemma

Height of a binary tree with $n!$ leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

$h = 1, \quad 2^1$ leaves
Key Lemma

Height of a binary tree with $n!$ leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

$h = 1$, 2^1 leaves

$h = 2$, 2^2 leaves
Key Lemma

Height of a binary tree with \(n! \) leaves is \(\Omega(n \log n) \).

Proof: The maximum number of leaves in a binary tree with height \(h \) is \(2^h \).

\[h = 1, \quad 2^1 \text{ leaves} \]
\[h = 2, \quad 2^2 \text{ leaves} \]
\[h = 3, \quad 2^3 \text{ leaves} \]
Proof of Lemma

- Let h be the height of decision tree, so it has at most 2^h leaves.
- The actual number of leaves is $n!$, hence

\[
2^h \geq n!
\]

\[
h \geq \log(n!)
\]

\[
= \log(n(n-1)(n-1)\ldots(2)(1))
\]

\[
\geq (n/2)\log(n/2) \quad \text{by algebra}
\]

\[
= \Omega(n \log n)
\]
Finishing Up

- Any binary tree with \(n! \) leaves has height \(\Omega(n \log n) \).

- Decision tree for any c-b sorting alg on \(n \) keys has height \(\Omega(n \log n) \).

- Any c-b sorting alg has at least one execution with \(\Omega(n \log n) \) comparisons.

- Any c-b sorting alg has \(\Omega(n \log n) \) worst-case running time.